跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱誠
研究生(外文):Yu-Cheng Chen
論文名稱:使用蒙地卡羅法評估放射治療劑量稽核驗證技術
論文名稱(外文):Evaluation the dose audit verification technology for radiotherapy using Monte Carlo method.
指導教授:郭于誠
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物醫學影像暨放射科學學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:劑量驗證蒙地卡羅模擬熱發光劑量計玻璃劑量計
外文關鍵詞:dose verificationMonte Carlo simulationTLDRPLGD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國際間放射治療劑量驗證系統透過郵寄方式解決地幅廣大、人力不足且分布不均的問題,國內則可透過放射治療劑量驗證系統,有效節省品保程序之時間與人力資本,且做為醫療單位間劑量輸出可比性,提供國人充分且完善的醫療品質,故本實驗欲建立放射治療劑量驗證系統,進行光子與電子射束的參數驗證與劑量輸出、照野平坦與對稱性、及旋轉中心等的輻射劑量相關之測定。
研發自製多功能性郵校假體,搭配熱發光劑量計、玻璃劑量計及輻射變色膠片等多種劑量計進行不同項目之量測,使用游離腔與蒙地卡羅模擬法探討散射供應關係取得散射修正因子,建立一劑量轉換修正公式,使經自製假體量測而得之劑量資訊校正為獲得充分散射供應之照射條件下的測量情況;建立標準校驗程序,並實際進行20台臨床醫療儀器的品質校驗程序,分析劑量計數據。
模擬與量測佐證自製假體尺寸導致之散射供應差異小於1.0%,實際校驗結果於自製假體量測劑量輸出差異小於5%之郵校劑量標準、照野平坦性與對稱性及輻射旋轉中心測定亦符合法規規定標準,說明本放射治療劑量校驗系統的可行性與準確性,並希望以此為基礎建立國內品質保證作業程序與基礎資料,未來以利自製假體的多元性發展與應用。


Internationally, the postal audit verification system for radiotherapy equipment solves the problem of the vast border, manpower shortage, and uneven distribution. In Taiwan, we can use the postal audit verification system to reduce the cost of time and manpower, along with investigate the comparison between medical unit dose output. Therefore, the aim of our research is to set up an audit verification program of radiotherapy, including the dose output, field flatness and symmetry, and radiation rotation center of the gantry and collimator.
We made our own hommade multifunctional postal audit phantom with thermolummescent dosimeters, glass dosimeters and EBT3 films to measure different projects for quality assurance. Using a Farmer type ionization chamber and Monte Carlo simulation to investigate the feasibility of our audit phantom, we designed a dose modified formula to calculate correct absorbed doses in full scatter contribution. In the end, we created a verified protocol and collect data from 20 clinical linear accelerators.
In the results, the scattering difference from phantom size factor was less than 1.0%, the dose output difference using our audit phantom was less than 5.0% from postal audit standard. The deviation of field flatness and symmetry and radiation rotation center of the gantry and collimator were in permissible range of quality assurance. This shows the stability and accuracy of our audit verification system. In the future, we hope to create the foundation of our quality assurance operating procedures, and develop anthropomorphic phantom for more clinical needs.


中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 文獻回顧 2
1-2 研究目的 9
1-3 研究架構 10
第二章 研究方法 14
2-1 實驗設備 15
2-1-1 蒙地卡羅模擬 15
2-1-2 熱發光劑量計 18
2-1-3 輻射變色膠片 19
2-1-4 玻璃劑量計 21
2-2 實驗方法 23
2-2-1 自製郵校假體 23
2-2-2 蒙地卡羅模擬 24
2-2-3游離腔與電量計 26
2-2-4 劑量計的篩選校正 28
2-3 郵校計畫的施行 30
2-3-1 光子與電子射束劑量輸出: 30
2-3-2 光子與電子射束照野平坦性與對稱性 31
2-3-3 準直儀與機頭輻射旋轉中心 31
2-3-4 建立郵校計畫程序書 31
第三章 研究結果 33
3-1 劑量計篩選校正結果 33
3-1-1 熱發光劑量計(TLD) 33
3-1-2 輻射變色膠片(EBT3) 34
3-1-3玻璃劑量計(RPLGD) 35
3-2 蒙地卡羅直線加速器機頭模擬最佳化參數 36
3-3 自製郵校系統劑量修正因子與蒙地卡羅模擬驗證 40
3-3-1 擺位修正因子 40
3-3-2 假體尺寸散射修正因子 41
3-4 自製郵校系統臨床測試結果 44
3-4-1 光子與電子射束劑量輸出 45
3-4-2 光子與電子射束照野平坦性與對稱性 48
3-4-3 機頭與準直儀輻射旋轉中心 50
第四章 討論 51
4-1劑量計篩選校正結果 51
4-2蒙地卡羅模擬與散射修正因子 52
4-3自製郵校系統臨床測試結果 52
第五章 結論 54
文獻 56



Almberg, S. S., Frengen, J., Kylling, A., & Lindmo, T. (2012). Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters. Medical physics, 39(1), 40-47. doi: 10.1118/1.3668315
Araki, Fujio, Moribe, Nobuyuki, Shimonobou, Toshiaki, & Yamashita, Yasuyuki. (2004). Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and cyber-knife. Medical physics, 31(7), 1980-1986.
Borca, Valeria Casanova, Pasquino, Massimo, Russo, Giuliana, Grosso, Pierangelo, Cante, Domenico, Sciacero, Piera, . . . Tofani, Santi. (2013). Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. Journal of Applied Clinical Medical Physics, 14(2).
Davies, JB, Izewska, J, Meriaty, H, & Baldock, C. (2013). An Australian secondary standard dosimetry laboratory participation in IAEA postal dose audits. Australasian Physical & Engineering Sciences in Medicine, 36(1), 55-58.
Ding, George X. (2002). Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator. Physics in medicine and biology, 47(7), 1025.
Dreindl, Ralf, Georg, Dietmar, & Stock, Markus. (2014). Radiochromic film dosimetry: Considerations on precision and accuracy for EBT2 and EBT3 type films. Zeitschrift für Medizinische Physik, 24(2), 153-163.
Followill, David S., Evans, DeeAnn Radford, Cherry, Christopher, Molineu, Andrea, Fisher, Gary, Hanson, William F., & Ibbott, Geoffrey S. (2007). Design, development, and implementation of the Radiological Physics Center’s pelvis and thorax anthropomorphic quality assurance phantoms. Medical Physics, 34(6), 2070. doi: 10.1118/1.2737158
Harris, Christie K, Elson, Howard R, Lamba, Michael AS, & Foster, Alvis E. (1997). A comparison of the effectiveness of thermoluminescent crystals LiF: Mg, Ti, and LiF: Mg, Cu, P for clinical dosimetry. Medical physics, 24(9), 1527-1529.
Hsu, Shih-Ming, Yeh, Shann-Horng, Lin, Meei-Shiow, & Chen, Wei-Li. (2006). Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters. Radiation protection dosimetry, 119(1-4), 327-331.
Ibbott, G. S. (2010). QA in Radiation Therapy: The RPC Perspective. Journal of Physics: Conference Series, 250, 012001. doi: 10.1088/1742-6596/250/1/012001
Ibbott, G. S., Haworth, A., & Followill, D. S. (2013). Quality assurance for clinical trials. Front Oncol, 3, 311. doi: 10.3389/fonc.2013.00311
Ishikura, S. (2008). Quality assurance of radiotherapy in cancer treatment: toward improvement of patient safety and quality of care. Japanese Journal of Clinical Oncology, 38(11), 723-729. doi: 10.1093/jjco/hyn112
Izewska, J et, Bera, P, & Vatnitsky, S. (2002). IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry. Radiation protection dosimetry, 101(1-4), 387-392.
Izewska, Joanna, & Andreo, Pedro. (2000). The IAEA/WHO TLD postal programme for radiotherapy hospitals. Radiotherapy and Oncology, 54(1), 65-72.
Izewska, Joanna, Andreo, Pedro, Vatnitsky, Stanislav, & Shortt, Ken R. (2003). The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiotherapy and Oncology, 69(1), 91-97.
Kirby, TH, Hanson, WF, Gastorf, RJ, Chu, CH, & Shalek, RJ. (1986). Mailable TLD system for photon and electron therapy beams. International Journal of Radiation Oncology* Biology* Physics, 12(2), 261-265.
Lye, J. E., Butler, D. J., Ramanathan, G., & Franich, R. D. (2012). Spectral differences in 6 MV beams with matched PDDs and the effect on chamber response. Physics in Medicine and Biology 57(22), 7599-7614. doi: 10.1088/0031-9155/57/22/7599
Mizuno, H., Kanai, T., Kusano, Y., Ko, S., Ono, M., Fukumura, A., . . . Ikeda, H. (2008). Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams. Radiotherapy and Oncology, 86(2), 258-263. doi: 10.1016/j.radonc.2007.10.024
Rogers, D. W. O. (1995). BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Medical Physics, 22(5), 503. doi: 10.1118/1.597552




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊