跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許婷婉
研究生(外文):Hsu, Ting-Wan
論文名稱:以像素灰階法評估定期乳房篩檢之乳腺緻密度
論文名稱(外文):The Pixel Gray Scale Evaluation on Breast Density for Constant Digital Mammography
指導教授:林政勳林政勳引用關係
指導教授(外文):Lin, Cheng-Hsun
口試委員:陳錦杏吳杰
口試委員(外文):Chen, Chin-HsingWu, Jay
口試日期:2015-06-29
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:乳房攝影乳腺緻密度乳房影像報告和數據系統ImageJ
外文關鍵詞:mammographybreast densitybreast imaging reporting and data system, BI-RADSImage J
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近年國內外皆有不少文獻探討乳腺的重要性,由於乳腺緻密度與乳房攝影檢查準確性成反比,因此,乳腺緻密度的測量有助傳達乳房攝影檢測乳癌的難度。本研究以回溯方式,收集各年齡層452位女性接受過兩次乳房篩檢,年齡範圍為27歲至79歲,得904張乳房攝影影像。使用兩種方式測量乳腺,一定性方法由專科醫師根據BI-RADS分級評估,二為定量方法使用電腦軟體ImageJ推估乳腺比例,經由定性和定量方法進行乳腺分級,用以了解不同年齡層其乳腺間隔兩年的退化程度。結果顯示,實驗設計的定量方法在不同年齡層其兩年乳腺退化程度為:<40歲為9.73%,40歲至49歲為8.95%,50歲至59歲為9.32%,60歲至69歲6.83%,>70歲為5.07%,並使用SPSS成對t檢定進行分析,p=0.001,本研究經由定性和定量方法發現不同年齡層對於定期篩檢乳腺退化有顯著差異,可將定量方法運用於臨床量化乳腺,藉此進行定期篩檢乳腺量化追蹤,提供婦女乳腺緻密度概念及相關罹癌之風險。
In recent years, many studies show that the importance of the breast density, because mammographic sensitivity is inversely breast density, that the observed higher relative risk was solely due to mass obscuration by dense tissues at mammography. To retrospectively collect 452 women received two screenings had 904 digital mammography images, the age range of 27 years to 79 year old. There were two ways to measure the breast density, Qualitative estimates determined by a qualified breast radiologist using the BI-RADS Categorical Assessment scale. Quantitative analysis the percentage breast density using computer software ImageJ. The results show that quantitative methods of experimental design in different ages for its two-year breast degree of degradation: <40 years was 9.73%, 40 to 49 years old was 8.95%, 50 to 59 years was 9.32%, 6.83% 60 to 69 years,> 70 years was 5.07%. The student pair t-test was used for the statistics with the aids of SPSS, p=0.001. The results show breast density was significant difference for different age groups at constant digital mammography. It can be also applied to the clinical for breast density follow, as it is a remarkable indication for the risk of breast cancer.
第一章 前言 1
1-1前言 1
1-2研究背景 3
1-3研究目標 5
1-4論文架構 6
第二章 文獻回顧 7
2-1乳腺緻密度於乳房攝影上之重要性 7
2-2乳房攝影之輻射影響評估 11
2-3乳腺密度測量方法 13
Wolfe 方法: 14
BI-RADS: 15
電腦軟體分析: 18
2-4 ImageJ影像分析軟體介紹 21
第三章 材料與方法 22
3-1影像選取設定 22
3-2乳房攝影儀器 23
3-3乳腺密度測量方法 24
3-4統計分析 28
第四章 結果 29
4-1受檢者乳腺分佈-定性方法 29
4-2受檢者乳腺分佈-定量方法 31
4-3 定期篩檢乳腺之退化程度 32
4-4乳腺多寡與參數劑量的變化 36
4-5乳腺與年齡相關統計分析 37
4-6乳房攝影參數條件和乳腺緻密度之相關性 39
4-7定性及定量方法比較 40
第五章 討論 42
5-1 不同年齡層乳腺緻密度探討 42
5-2 乳房壓迫厚度與乳腺比例之關係 43
5-3 乳腺退化差異之相關因素 45
5-4定性與定量方法差異探討 48
5-5 乳腺推估比例探討 50
5-6 乳腺密度評估方法比較 52
第六章 結論 55
第七章 研究限制與展望 56
參考文獻 57


1.行政院衛生福利部 國民健康署 中華民國2014年國民健康署年報
2.張金堅,郭文宏,王明暘 台灣乳癌之流行病學 中華癌醫會誌 24(2), 85-93, 2008
3.Cristina M Checka, Jennifer E. chun, freya R. Schnabel, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR:2012;198:292-295
4. Norman F. Boyd, Helen Guo, Lisa J. Martin, Limei Sun, Jennifer Stone, Eve Fishell, Roberta A. Jong, Greg Hislop, Anna Chiarelli, Salomon Minkin, and Martin J. Yaffe. Mammographic density and the risk and detection of breast cancer. The New England Journal of Medicine 2007;356;3:227-236
5. Jennifer A. Harvey, Viktor E.Bovbjerg. Quantitative assessment of mammographic breast density: relationship with breast cancer risk.Radiology2004;230:29-41
6. Christoph I.Lee, Lawrence W. Bassett, Constance D.Lehman. Breast density legislation and opportunities for patient-centered outcomes research. Radiology 2012;264:632-635
7. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographyically dense breasts: initial experience with Connecticut Public Act 09-41. Radiology 2012;265:59-68
8. Freer, Phoebe E. Mammographic Breast Density: Impact on Breast Cancer Risk and Implications for Screening. RadioGraphics, 2015, 35.2: 302-315.
9. Butler, Reni S. Invited Commentary: The Breast Density Dilemma—Challenges, Lessons, and Future Directions. RadioGraphics (2015).
10 Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast Density as a Predictor of Mammographic Detection: Comparison of Interval- and Screen-Detected Cancers. Journal of the National Cancer Institute, Vol. 92, No. 13, July 5,2000; 1081-1087
11.Marcela G. del Carmen,Elkan F. Halpern,Daniel B. Kopans, Moore RH, Goss PE, Hughes KS. Mammographic Breast Density and Race. AJR:188, April 2007,1147-1150
12.Gertraud Maskarinec, Lixin Meng, Goske Ursin . Ethnic differences in mammographic densities. International Journal of Epidemiology 2001:30:959-965
13.Wolfe JN. Breast patterns as an index for developing breast cancer. AJR 1976; 126:1130–1137
14.Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD. Mammographic density as an intermediate phenotype for breast cancer. Lancet Oncol 2005; 6:798–808
15.Martin J Yaffe. Measurement of mammographic density. Breast Cancer Research,2008;10(3):209-218
16.Norman F. Boyd, Gilian S.Dite, Jennifer Stone, Anoma Gunasekaea, Dallasr R. English, Margaret, Grahamg,Giles, David Tritchler, Anna Chiarelli, Martin J. Yaffe and John L. Hopper. Mammographic density a reisk factor for breast cancer.N Engl J Med, 2002;347(12):886-894
17.M.J Yaffe J. M. Boone and N. Packard, O. Alonzo-Proulx, S.-Y. Huang, C. L. Peressotti, A. Al-Mayah and K. Brock, The myth of 50-50 breast. Medical Physice, 2009;36(12):5437-5443
18.Raymond C. Boston, Mitchell D. Schnall ,Sarah A. Englander, Landis JR, Moate PJ. Estimation of the content of fat and parenchyma in breast tissue using MRI T1 histograms and phantoms. Magnetic Resonance Imaging ,2005;23(4):591-599
19.Holger F. Boehm, Tanja Schneider Sonja M. Buhmann Kirchhoff, Thomas Schlossbauer, Dorothea Rjosk-Dendorfer, Stefanie Britsch and Maxillian Reiser.Automated Classification of breast Parenchymal Density: Topologic Analysis of X-Ray Attenuation Patterns Depicted with Digital Mammography. AJR,2008;191:W275-282
20.H. S. Sheshadri, A. Kandaswamy. Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms.Computerized Medical Imaging and Graphies,2007;31:46-8
21.Anabel M Scaranelo, Maria Claudia Carrillo, Rachel Fleming, Jacks LM, Kulkarni SR, Crystal P. Pilot Study of Quantitative Analysis of Background Enhancement on Breast MR Images: Association with Menstrual Cycle and Mammographic Breast Density. Radiology:Volume267:Number3-June 2013:692-700
22.趙真,田雨生,蘇冠豪,張振莒,鄭凱元. 以像素值評估婦女乳房組織中乳腺及脂肪比例.C J Radiologic 2012:36(1):21-26
23.Katherine E. Martin,MarkA.Helvie,Chuan Zhou, Roubidoux MA,Bailey JE , Paramagul C, Blane CE, Klein KA, Sonnad SS, Chan HP. Mammographyic Density Measured with Quantitative Computer-aided Method:Comparison with Radiologists Estimates and BI-RADS Categories. Radiology: Volume 240:Number 3-September 2006
24.D’Orsi CJ, Bassett LW, Berg WA. Breast Imaging Reporting and Data System: ACR BI-RADS—breast imaging atlas. Reston, VA: American College of Radiology,2003
25.Alberto Tagliafico,Giulio Tagliafico, Simona Tosto , Chiesa F, Martinoli C, Derchi LE, Calabrese M. Mammographic density estimation: Comparison among BI-RADS categories, a semi-automated software and a fully automated one. The Breast 18 (2009) 35–40
26.S. Ciatto, N. Houssamib, A. Apruzzesea, Bassetti E, Brancato B, Carozzi F,Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B,Risso G, Russo F, Scorsolini A.Categorizing breast mammographic density:intra- and interobserver reproducibility of BI-RADS density categories. The Breast (2005) 14, 269–275
27.Cristina M. Checka,ennifer E. Chun,Freya R. Schnabel, Lee J, Toth H. The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening. AJR:198, March 2012.292-295
28.Winkler, N. S., Raza, S., Mackesy, M., & Birdwell, R. L.. Breast Density: Clinical Implications and Assessment Methods. RadioGraphics,2015, 35.2: 316-324.
29.Boyd NF, Greenberg C, Lockwood G, Little L, Martin L, Byng J, Yaffe M, Tritchler D. Effects at 2 years of a low-fat, high-carbohydrate diet on radiologic features of the breast:results from a randomized trial. J Natl Cancer Inst 1997;89:488–496
30.R. Edward Hendrick. Radiation Doses and Cancer Risks from Breast Imaging Studies. Radiology: Volume 257: Number 1—October 2010;246-253
31.黃美蘭、林政勳、吳杰.利用乳房磁振造影影像評估非均質乳房組織的乳腺劑量值. 碩士論文
32.Alberto Tagliafico, Giulio Tagliafico ,Simona Tosto , Chiesa F, Martinoli C, Derchi LE, Calabrese M. Mammographic density estimation: Comparison among BI-RADS categories, a semi-automated software and a fully automated one. The Breast 2009;18:35–40
33.Tiago Ferreira , Wayne Rasband. ImageJ User Guide /IJ 1.46r http://imagej.nih.gov/ij/docs/guide.
34.Melinda L. Irwin, Erin J. Aiello, Anne McTiernan, Leslie Bernstein, Frank D. Gilliland, Richard N. Baumgartner, Kathy B. Baumgartner, and Rachel Ballard-Barbash. Physical Activity, Body Mass Index, and Mammographic Density in Postmenopausal Breast Cancer Survivors. J Clin Oncol. 2007 Mar 20;25(9):1061-6.
35.Norman F. Boyd, Lisa J. Martin, Limei Sun, Guo H, Chiarelli A, Hislop G, Yaffe M, Minkin S. Body Size, Mammographic Density, and Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev 2006;15:2086-209
36.Dong SL, Chu TC, Lan GY, Lin YC, Yeh YH, Chuang KS. Development of an adjustable model breast for mammographic dosimetry assessment in Taiwanese women.AJR 2011;196(4):476-81
37.Norman F. Boyd, Lisa J. Martin, Limei Sun, Helen Guo, Anna Chiarelli, Greg Hislop, Martin Yaffe, Salomon Minkin. Body Size, Mammographic Density, and Breast Cancer RiskCancer. Epidemiol Biomarkers Prev 2006;15(11):2086-2092
38.Miglioretti, D. L., Walker, R., Weaver, D. L., Buist, D. S., Taplin, S. H., Carney, P. A., White, E. Accuracy of screening mammography varies by week of menstrual cycle.Radiology, 2011, 258.2: 372-379.
39.White, E., Velentgas, P., Mandelson, M. T., Lehman, C. D., Elmore, J. G., Porter, P. & Taplin, S. H. . Variation in mammographic breast density by time in menstrual cycle among women aged 40–49 years. Journal of the National Cancer Institute, 1998;90(12):906-910.
40.Giske Ursin,1 Yuri R. Parisky, Malcolm C. Pike, and Darcy V. Spicer. Mammographic Density Changes During the Menstrual Cycle. Cancer Epidemiology, Biomarkers & Prevention 2001;(10):141–142
41.Highnam R, Brady M, Shepstone B. A representation for mammographic image processing. Med Image Anal 1996;1:1-1839. Kaufhold J, Thomas JA, Eberhard JW, Galbo CE, Trotter DE. A calibration approach to glandular tissue composition estimation in digital mammography. Med Phy 2002;29:1867-1880
42.Kaufhold J, Thomas JA, Eberhard JW, Galbo CE, Trotter DE. A calibration approach to glandular tissue composition estimation in digital mammography. Med Phy 2002;29:1867-1880
43.Bloomquist A, Augustine B, Pawluczyk O, Mawdsley GE, Yaffe MJ. Estimating breast density using a volumetric technique and full field digital mammogram: preliminary results. In:Fifth International Workshop on Digital Mammography. Sunnybrook & Women’s College Health Sciences Centre, Toronto, Canada, June 11-1, 2000:126
44.Noriah Jamal, Kwan-Hoong Ng, Donald McLean, Lai-Meng Looi, Fatimah Moosa.Mammographic Breast Glandularity in Malaysian Women: Data Derived from Radiography. AJR 2004;182: 713-717
45.Lee, N. A., Rusinek, H., Weinreb, J., Chandra, R., Toth, H., Singer, C., & Newstead, G.. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR. American journal of roentgenology,1997; 168(2):501-506.
46.Katherine E. Martin, MD Mark A. Helvie, MD Chuan Zhou, PhD. Mammographic Density Measured with Quantitative Computer-aided Method: Comparison with Radiologists’Estimates and BI-RADS Categories. Radiology 2006;240: 656-665
47.Catherine S. Giess, Elisabeth P. Frost, Robyn L. Birdwell. Interpreting One-View Mammographic Findings: Minimizing Callbacks While Maximizing Cancer Detection. RadioGraphics 2014;34:928-940
48.Sohn, G., Lee, J. W., Park, S. W., Park, J., Woo, J., Kim, H. J., . & Ahn, S. H. Reliability of the Percent Density in Digital Mammography with a Semi-Automated Thresholding Method. Journal of breast cancer,2014;17(2):174-179.
49.Nelson, T. R., Cerviño, L. I., Boone, J. M., & Lindfors, K. K. Classification of breast computed tomography data. Medical physics,2008;35(3):1078-1086
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top