跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉懿萱
研究生(外文):Yi-Hsuan Liu
論文名稱:二次壓縮指數與壓縮指數比值和土壤基本性質相關性之研究
論文名稱(外文):A study on relationship between secondary compression index and compression index ratio and general properties of soils
指導教授:馮道偉馮道偉引用關係
指導教授(外文):Dao-Wei Feng
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:111
中文關鍵詞:黏土壓縮指數二次壓縮指數礦物
外文關鍵詞:mineralsecondary compressioncompression indexclay
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不同種類土壤受到載重所產生的壓縮與二次壓縮值皆不同,若是能了解影響土壤壓縮與二次壓縮之因素,既有助於估算土壤之沉陷量,亦有助於進行土壤壓密行為之研究及發展。Mesri and Castro (1987)提出二次壓縮指數與壓縮指數比值 為常數的觀念,可用於定義任何土壤二次壓縮的行為。
文獻中顯示許多土壤之 值為常數,然而現今尚不清楚是土壤之何種因素在影響著 值的大小,本研究利用基本物理性質試驗、單向度壓密試驗及X光繞射試驗,分別對高嶺土、紅土、石門淤泥和石牌黏土土樣進行分析。期望能由土壤之基本物理性質和土壤內所含的礦物來探討 的影響因素。
根據試驗分析結果,二次壓縮指數與綠泥石、伊利石和雲母之累積含量相關,壓縮指數與土壤之液性限度、初始孔隙比及伊利石和高嶺石礦物之累積含量相關。綠泥石、伊利石和雲母含量高且高塑性之土壤(高嶺土),其二次壓縮指數高,且壓縮指數很高,所以 較低;綠泥石、伊利石和雲母含量低且低塑性之土壤(紅土),其二次壓縮指數很低,且壓縮指數低,所以 較低;綠泥石、伊利石和雲母含量高且低塑性之土壤(石門淤泥),其二次壓縮指數高,且壓縮指數很低,所以 較高;綠泥石、伊利石和雲母含量高且低塑性之土壤(石牌黏土),其二次壓縮指數值很高,且壓縮指數值低,所以 較高。
When a different type of soil receives loading, the induced compression and secondary compression are different. If the factors affecting both soil compression and secondary compression were understood, it would be useful for both estimating ground settlement and studying soil consolidation behavior. Mesri and Castro (1987) propose the concept of constant which completely defines the secondary compression behavior of any one soil.
Documents show a constant value for each soil, but it is not clear yet as to what kind of factors would affect the value. In this study, basic physical tests, IL oedometer test and X-Ray Diffractrometry test were used on kaolin, red soil, shimen mud, and shipi clay samples. It is expected to understand the impact of the basic physical properties and mineral contents on both compression index and secondary compression index, so as to investigate their effect on the value of .
According to the test results, secondary compression index is related to the accumulated chlorite, illite, and mica contents of the soil, whereas compression index is related to initial void ratio, liquid limit and the accumulated illite and kaolinite contents of the soil. Kaolin sample contains high levels of chlorite, illite and mica mineral with high plasticity so that its secondary compression index is high and compression index is very high, thus resulting in a lower value. Red soil sample contains low levels of chlorite, illite, and mica with low plasticity so that its secondary compression index is very low and compression index is low, thus resulting in a lower value. Shimen mud sample contains high levels of chlorite, illite, and mica with low plasticity so that its secondary compression index is high and compression index is very low, thus resulting in a higher value. Shipi clay sample contains high levels of chlorite, illite, and mica with low plasticity so that its secondary compression index is very high and compression index is low, thus resulting in a higher value.
目錄
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
照片目錄 IX
圖目錄 X
符號表 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法 2
1.4 論文架構 3
第二章 文獻回顧 6
2.1 土壤基本性質 6
2.1.1 阿太堡限度試驗 6
2.1.2 土壤基本性質參數 7
2.1.3 顆粒大小 8
2.2 壓縮性 9
2.3 二次壓縮特性 12
2.4 二次壓縮指數與壓縮指數關係 14
第三章 試驗計畫 30
3.1 試驗土樣 30
3.2 試驗項目 30
3.3 土壤基本物理性質試驗 31
3.4 單向度壓密試體製作 31
3.4.1 儀器 31
3.4.2 重製試體製作步驟 32
3.5 傳統單向度壓密試驗 33
3.5.1 試驗步驟 33
3.5.2 測定濾紙壓縮量 34
3.6 X光繞射分析試驗 35
3.6.1 試驗目的 35
3.6.2 X光繞射分析步驟 36
第四章 試驗結果 43
4.1 一般物理性質試驗 43
4.2 單向度壓密試驗 43
4.3 X光繞射分析結果 45
第五章 試驗結果分析與討論 60
5.1 比較不同土樣之 值與 值 60
5.1.1 紅土和高嶺土之比較 61
5.1.2 紅土和石門淤泥之比較 62
5.1.3 紅土和石牌黏土之比較 63
5.1.4 高嶺土和石門淤泥之比較 64
5.1.5 高嶺土和石牌黏土之比較 65
5.1.6 石門淤泥和石牌黏土之比較 66
5.1.7 試驗結果與前人試驗結果之比較 67
5.2 本研究測得 值與經驗公式 值之比較 69
第六章 結論與建議 89
6.1 結論 89
6.2 建議 90
參考文獻 91


表目錄
表2.1 阿太堡限度值與黏土礦物之關係 17
表2.2 常見礦物之活性 .17
表2.3 不同土壤顆粒大小所對應之黏土礦物範圍表 18
表2.4 壓縮指數經驗公式 19
表2.5 壓縮指數經驗公式 20
表2.6 各學者之壓縮指數經驗公式整理 21
表2.7 土壤二次壓縮性質之分級 22
表2.8 自然沉積土壤之 值 22
表2.9 土壤之 比值 23
表2.10 土壤之基本物理性質與 比值 23
表3.1 中型壓密各階載重 37
表3.2 飽和濾紙各階累積壓縮量 37
表4.1 重製試樣之一般物理性質 47
表4.2 重製試樣之試驗條件 47
表4.3 X光繞射分析數據所對應之黏土礦物和常見的非黏土礦物表 48
表4.4 X光繞射分析結果總表 49
表4.5 高嶺土之礦物含量百分比 50
表4.6 紅土之礦物含量百分比 50
表4.7 石門淤泥之礦物含量百分比 50
表4.8 石牌黏土之礦物含量百分比 51
表5.1 各種土壤之基本物理性質 71
表5.2 試驗土樣之綠泥石、伊利石和雲母累積礦物含量百分比 71
表5.3 試驗土樣之伊利石和高嶺石累積礦物含量百分比 .71
表5.4 渥太華砂和麥寮砂單向度壓密試驗條件 72





照片目錄
照片3.1 中型壓密儀 39
照片3.2 左方為傳統單向度壓密環,右方為中型壓密環 .39
照片3.3 傳統單向度壓密試驗設備 40
照片3.4 傳統單向度壓密盒 40
照片3.5電腦自動記讀系統 .41
照片3.6 X光繞射儀(廠牌:BRUKER,型號D8 ADVANCE) 41
照片3.7 X光繞射分析樣品修整設備 42




圖目錄
圖1.1 研究流程圖 5
圖2.1 土壤之三態示意圖 24
圖2.2 塑性指數和黏土含量之關係圖 24
圖2.3 顆粒大小分類 25
圖2.4 不同土壤之 與 之關係圖 25
圖2.5 各種土壤之天然含水量與壓縮指數關係圖 26
圖2.6 壓縮和加載-卸載指數與塑性指數的關係圖 26
圖2.7 土壤之二次壓縮指數與天然含水量關係圖 27
圖2.8 重塑黏土的雙對數二次壓縮指數與液限孔隙比 的關係 27
圖2.9 在不同深度土壤之潛變速率與壓縮指數關係 28
圖2.10 黏性土壤二次壓縮指數與壓縮指數之關係示意圖 28
圖2.11 比值與分組指數之關係圖 29
圖3.1 試驗規劃與流程圖 38
圖4.1 試驗土樣之塑性圖 52
圖4.2 試驗土樣之粒徑分佈曲線 52
圖4.3 各土樣之壓密曲線(壓密應力54.8 ) 53
圖4.4 各土樣之壓密曲線(壓密應力109.6 ) 53
圖4.5 各土樣之壓密曲線(壓密應力219.2 ) 54
圖4.6 各土樣之壓密曲線(壓密應力438.4 ) 54
圖4.7 試驗土樣之壓縮曲線 55
圖4.8 試驗土樣之 -壓密應力圖 55
圖4.9 試驗土樣之 -壓密應力圖 56
圖4.10 試驗土樣之 -壓密應力圖 56
圖4.11 各試驗土樣之 - 圖 57
圖4.12 高嶺土之X光繞射分析圖 57
圖4.13 紅土之X光繞射分析圖 58
圖4.14 石門淤泥之X光繞射分析圖 58
圖4.15 石牌黏土之X光繞射分析圖 59
圖5.1 高嶺土和紅土之二次壓縮指數-壓密應力圖 73
圖5.2 高嶺土和紅土之壓縮指數-壓密應力圖 73
圖5.3 紅土和石門淤泥之二次壓縮指數-壓密應力圖 74
圖5.4 紅土和石門淤泥之壓縮指數-壓密應力圖 74
圖5.5 紅土和石牌黏土之二次壓縮指數-壓密應力圖 75
圖5.6 紅土和石牌黏土之壓縮指數-壓密應力圖 75
圖5.7 高嶺土和石門淤泥之二次壓縮指數-壓密應力圖 76
圖5.8 高嶺土和石門淤泥之壓縮指數-壓密應力圖 76
圖5.9 高嶺土和石牌黏土之二次壓縮指數-壓密應力圖 77
圖5.10 高嶺土和石牌黏土之壓縮指數-壓密應力圖 77
圖5.11 石門淤泥和石牌黏土之二次壓縮指數-壓密應力圖 78
圖5.12 石門淤泥和石牌黏土之壓縮指數-壓密應力圖 78
圖5.13 各試驗土樣之二次壓縮指數-壓密應力圖 79
圖5.14 各試驗土樣之二次壓縮指數-壓密應力圖 79
圖5.15各試驗土樣之二次壓縮指數(壓密應力27.4 )與綠泥石、伊利石、雲母和高嶺石經分配後之含量百分比關係圖 80
圖5.16各試驗土樣之二次壓縮指數(壓密應力54.8 )與綠泥石、伊利石、雲母和高嶺石經分配後之含量百分比關係圖 80
圖5.17各試驗土樣之二次壓縮指數(壓密應力219.2 )與綠泥石、伊利石、雲母和高嶺石經分配後之含量百分比關係圖 81
圖5.18 各試驗土樣之壓縮指數(壓密應力27.4 )與初始孔隙比之關係圖 81
圖5.19 各試驗土樣之壓縮指數(壓密應力54.8 )與初始孔隙比之關係圖 82
圖5.20 各試驗土樣之壓縮指數(壓密應力219.2 )與初始孔隙比之關係圖 82
圖5.21 各試驗土樣之壓縮指數(壓密應力27.4 )與液性限度之關係圖 83
圖5.22 各試驗土樣之壓縮指數(壓密應力54.8 )與液性限度之關係圖 83
圖5.23 各試驗土樣之壓縮指數(壓密應力219.2 )與液性限度之關係圖 84
圖5.24 麥寮砂系列試樣之二次壓縮指數-壓密應力圖 84
圖5.25 渥太華砂系列試樣之二次壓縮指數-壓密應力圖 85
圖5.26 麥寮砂+粗白雲母試樣之二次壓縮指數-壓密應力圖 85
圖5.27 渥太華砂+粗白雲母試樣之二次壓縮指數-壓密應力圖 86
圖5.28 麥寮砂系列試樣之壓縮指數-壓密應力圖 86
圖5.29 渥太華砂系列試樣之壓縮指數-壓密應力圖 87
圖5.30 麥寮砂+粗白雲母試樣之壓縮指數-壓密應力圖 87
圖5.31 渥太華砂+粗白雲母試樣之壓縮指數-壓密應力圖 88
圖5.32 量測 比值與經驗公式求得之 比值關係圖 88
1.曾玲玲、洪振舜、劉松玉、陳福全,2012年,「重塑黏土次固結性狀的變化規律與定量評價」,岩土工程學報,第34卷,第8期,第1496-1500頁。
2.楊振邦,2009年,「雲母含量影響砂土壓縮性之研究」,中原大學土木工程學系,碩士論文。
3.American Society for Testing and Materials. (1993), A Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM Standards, D4318-95.
4.Al-Hussaini, M. M. (1977), Contribution to the Engineering Classifications of Cohesionless Soils. Waterways Experiment Station Vicksburg.
5.Atterberg, A. (1911), Die Plastizilät der Tone. Int. Mitt. Bodenk. Vol.1, pp. 10-43.
6.Bowles, J. W. (1979), Physical and Geotechnical Properties of Soil. New York: McGraw Hill.
7.Buisman, A. S. K. (1936), Results of Long Duration Settlement Tests. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Cambridge, pp. 100-106.
8.Burland, J. B. (1990), “On the Compressibility and Shear Strength of Natural Clays.” Geotechnique, Vol. 40, No. 3, pp. 329-378.
9.Casagrande, A. (1932), “Resarch on the Atterberg Limits of Soils.” Public Roads, Vol. 13, No. 8, pp. 901-991.
10.Casagrande, A. (1948), “Classification and Identification of Soils.” Transactions, ASCE, Vol. 113, pp. 901-991.
11.Casey, H., Westrich, R. and Holdern, R. (1991), “Pissolution Rates of Piagioclase at pH=2 and 3.” American Mineralogist, Vol. 76, pp. 211-217.
12.Das, M. (2008), Principles of Geotechnical Engineering, Fourth Edition. Pws-Kent Publishing Company.
13.Das, M. (2008), Advanced Soil Mechanics, Third Edition. CRS Press Pulishing Company.
14.Di Maio, C., Santoli, L. and Schiavone, P. (2004), “Volume Change Behavior of Clays: the Influence of Mineral Composition, Pore Fluid Composition and Stress state.” Mechanics of Materials, Vol. 36, No. 5-6, pp. 435-451.
15.Dubois, I.E., Holgresson, S., Allard, S. and Malmstrom, M.E. (2010), Correlation between Particle Size and Surface Area for Chlorite and K-Feldspar. International Symposium; 13th Water-Rock Interaction, pp. 717-720.
16.Grim, R. E. (1962), Applied Clay Mineralogy. McGraw-Hill, New York.
17.Holtz, H. and Kovacs, D. (2010), An Introduction to Geotechnical Engineering. Prentice Hall, pp. 77-108.
18.Hough, B. K. (1957), Basic Soils Engineering, 1st ed. The Ronald Press Company, New York, N. Y.
19.Jesmani, M., Vaezi, R. and Kamalzare, M. (2012), “Correlation between Ratio and Index Parameters of Soils.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 45, pp.207-220.
20.Koppula, S. D. (1981), “Statistical Estimation of Compression Index.” ASTM Geotechnical Testing Journal, Vol. 4, No. 2, pp. 68-73.
21.Kulhawy, F. H. and Mayne, P. W. (1990), Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute, Palo Alto, California.
22.Ladd, C. C. (1973), Settlement Analysis for Cohesive Soils, Research Report R71-2, No. 272. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.
23.Lambe, T. W. and Martin R. T. (1955), Composition and Engineering Properties of Soil:Ⅲ. Proceedings of the Highway Research Board, Washingto , D. C.
24.Mesri, G. (1973), “Coefficient of Secondary Compression.” Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, Vol. 99, No. SM1, pp. 123-137.
25.Mesri, G. and Ajlouni, M. (2007), “Engineering Properties of Fibrous Peats.” Journal of Geotechnical Engineering, Vol. 133, No. 7, pp. 851-866.
26.Mesri, G., and Castro, A. (1987), “ Concept and During Secondary Compression.” Journal of Geotechnical Engineering, Vol. 113, pp. 230-247.
27.Mesri, G., and Godlewski, P. M. (1977), “Time and Stress Compressibility Interrelationship.” Journal of Geotechnical Engineering Division, Vol. 103, No.5, pp. 417-430.
28.Mesri, G. and Godlewski, P. M. (1979), “Closure to Time and Stress Compressibility Interrelationship.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, pp.106-113.
29.Mesri, G., Feng, T. W. and Shahien, M. (1999), “Cofficient of Consolidation by Inflection Point Method.” Jounral of Geotechnical and Geoenvironmental Engineering, Vol.125, No.8, pp. 716-718.
30.Mesri, G., and Vardhanabhuti, B. (2005), “Secondary Compression.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 3, pp. 398-401.
31.Mesri, G. and Vardhanabhuti, B. (2006), “Closure to Secondary Compressi-
on.” Journal of Geotechnical and Geonviromental Engineering, ASCE, Vol. 132, No. 6, pp. 817-818.
32.Mitchell, J. K. and Soga, K. (2005), Fundamentals of Soil behavior. Chichester, New York.
33.Nagaraj, T. S. and Srinivasa Murthy, B. R. (1983), “Rationalization of Skempton’s Compressibility Equation.” Geotechnique, Vol. 33, No. 4, pp. 433-443.
34.Nagaraj, T. S., and Srinivasa Murthy, B. R. (1986), “A Critical Reappraisal of Compression Index Equation.” Geotechnique, Vol. 36, No. 1, pp. 27-32.
35.Nakase, A., Kamei, T. and Kusakabe, O. (1988), “Constitutive Parameters Estimated by Plasticity Index.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 114, pp. 844-858
36.Nishida, Y. (1956), “A rief Note on Compression Index of Soil.” Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 82, No. SM3, pp. 1027-1~1027-14.
37.Oswald, R. H. (1980), “Universal Compression Index Equation.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, pp. 1179-1199.
38.Park, J. H., and Koumoto, T. (2004), “New Compression Index Equation.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 2, pp. 223-226.
39.Rendon-Herrero, O. (1980), “Universal Compression Index Equation.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. 11, pp. 1179-1200.
40.Rendon-Herrero, O. (1983), “Universal Compression Index Equation.” Disc- ssion, Journal of the Geotechnical Engineering, ASCE, Vol. 109, No. 5, pp. 755-761.
41.Samuels, S. G. (1950), The Effect of Base Exchange On the Engineering Properties of Soils. Building Research Station, Note C176, Great Britain.
42.Skempton, A. W. (1944), “Notes On the Compressibility of Clays.” Quarterly Journal Geological Society, 100(1-4), pp. 119-135.
43.Skempton, A. W. (1953), “The Colloidal Activity of Clay, Proceeding of the Third International Conference on Soil Mechanics and Foundation Engineering.” Zurich, Vol. , pp. 57-61.
44.Soveri, U. (1950), Differential Thermal Analysis of Some Quarternary Clays of Fennoscandia. Suomalaisen Tideakaternian Toimituksia Annaks Academiae Scientiarium Fennicae. Se. A, Ⅲ Geologica-Geographica 23.
45.Terzaghi, K. and Peck, R. (1948), Soil Mechanics in Engineering Practice. Wiley, New York.
46.Terzaghi, K., Peck, B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice. 3rd edn. Wiley, New York.
47.Walker, L. K. and Raymond, G. P. (1968), “The Prediction of Consolidation Rate in A Cemented Clay.” Canadian Geotechnical Journal, Vol. 5, pp.192- 216.
48.Warkentin, B. P. and Bozozuk, M. (1961), “Shrinking and Swelling Properties of Two Canadian Clays.” Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol. 1, pp.851-855.
49.Wroth, C. P. and Wood, D.M. (1978), “The Correlation of Index Properties with Some Basic Engineering Properties of Soils”, Canadian Geotechnical Journal, Vol. 15, No.2, pp.137-145.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top