(44.192.112.123) 您好!臺灣時間:2021/03/08 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭明康
研究生(外文):MINH KHANG TRINH
論文名稱:聚丙烯薄膜表面之雙離子化研究與其血液相容性質探討
論文名稱(外文):A study of Surface Zwitterionization of Polypropylene Membranes and its Hemocompatibility
指導教授:張雍張雍引用關係費安東
指導教授(外文):Yung ChangAntoine Venault
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:85
中文關鍵詞:血球zP4VP-r-PODA.聚丙烯(PP)膜
外文關鍵詞:zP4VP-r-PODA copolymerpolypropylene membraneantifoulinghemocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究重點放在一種新的隨機兩性共聚物 zP4VP-r-PODA,此共聚物是由 4-乙烯基吡咯烷酮(4-vinylpyrrolidone)和丙烯酸十八酯(octadecyl acrylate)聚合反應後得到,之後加入碘乙酸(iodoacetic acid)以便修改聚丙烯(PP)膜,為膜添加防汙和血液相容性質。當高分子的構造成型,我們透過自組裝熱揮發程序將聚丙烯(PP)膜的物化性質用zP4VP-r-PODA修飾。結果顯示此薄膜有效抵抗多種蛋白質(牛血清蛋白、溶菌酶)、細菌(大腸桿菌)、血球(紅血球、白血球、血小板)和全血的貼附。依此研究,兩性離子化前,膜的隨機共聚自組裝情形被系統化與這些修飾的膜相比較。總體而言,此研究推出這種新型改性聚丙烯(PP)膜,將可能成為血液濾過的替代材料。
This work lays the focus on the use of a novel random zwitterionic copolymer, namely zP4VP-r-PODA, obtained by polymerization reaction between 4-vinylpyrrolidone and octadecyl acrylate, and by the subsequent action of iodoacetic acid, in order to modify polypropylene (PP) membranes and provide them with antifouling and hemocompatible properties. Once the result of polymer characterization presented, we move onto the physico-chemical characterization of the polypropylene (PP) membranes modified with zP4VP-r-PODA by self-assembling thermal evaporation process. Membranes are shown to efficiently resist to the adhesion of various proteins (bovine-serum-albumin, lysozyme) bacteria (Escherichia coli) blood cells (erythrocytes, leukocytes, thrombocytes) and whole blood cell. Along this manuscript, performances of membranes self-assembled with random copolymer before zwitterionization (P4VP-r-PODA) are systematically compared to those obtained with membranes modified with zP4VP-r-PODA. Overall, this study unveils that these novel modified PP membranes holds promise as an alternate material for blood filtration.
Table of contents
中文摘要 i
Abstract ii
Acknowledgements iii
Table of contents iv
List of Figures vi
List of Tables ix
Abbreviations and Acronyms x
Chapter 1 Introduction 1
Chapter 2 -Literature review 3
2.1 Introduction 3
2.2 Evolution of biomaterials 3
2.3 Surface contamination 8
2.4 Development of antimicrobial polymers and anti-biofouling materials 9
2.4.1 Multifunctional surface design 10
2.4.2 2-Hydroxyethyl methacrylate (HEMA)-based polymers- first generation of antifouling material. 14
2.4.3 Surface PEGylation and OEGylation-second generation of antifouling surface design 15
2.4.4 Membrane zwitterionization and advantages of zwitterionic membranes with poly(4-vinylpyridine) group as a base material 17
2.5 Human blood 26
2.6 Blood compatibility materials 28
2.7 Polymerization techniques 30
2.7.1 Free radical polymerization 30
2.7.2 Reversible Addition-Fragmentation Chain Transfer Polymerization 30
2.7.3 Atom Transfer Radical Polymerization 31
2.8 Surface modification processes - advantages of Evaporation-Induced Self-Assembling process 32
2.8.1 Surface grafting 32
2.8.2 Surface coating 37
2.8.3 Blending 38
Chapter 3 Materials and Method 41
3.1 Synthesis and characterization of zwitterionic Poly(4VP-r-ODA) random copolymers 41
3.2 Modification and characterization of virgin and modified PP membrane 42
3.2.1 Preparation of Coating Solution. 42
3.2.2 Self-Assembling of Copolymer onto Polypropylene Membranes. 42
3.2.3 Chemico-physical Characterization of Self-Assembled Membranes. 43
3.2.4 Protein Adhesion Tests 45
3.2.5 Bacterial Attachment Tests. 45
3.2.6 Hemocompatibility Tests. 46
Chapter 4 – Results and Discussion 48
4.1 Aspects of the Synthesis and Properties of P4VP-r-PODA and zP4VP-r-PODA 48
4.2 On the Surface Modification of the Polypropylene Membranes 50
4.2.1 Hydration Properties of Self-Assembled Membranes. 53
4.2.2 Resistance of Self-Assembled Membranes to Biofouling. 54
4.2.3 Hemocompatibility of Self-Assembled Membranes. 55
4.2.4 Stability tests. 62
Chapter 5 Conclusions and Future works 64
References 67

List of figures

Figure2-1. Schematic of prokaryotic, prototypical bacterial cell structure and the two-stage bacterial adhesion model that precedes organization of a mature biofilm. 8
Figure 2-2 Concept of repel and release of a designed network 11
Figure 2-3. Schematic of surface contact-killing and repelling developed by Jiang et al a) “one-time-switch” surface, b)surface reversible. 12
Figure2-4. Repelling and contact-killing of N,N-Dimethyl-dodecylammonium 13
Figure 2-5. Evolution of antifouling materials 14
Figure 2-6 Schematic illusion of state of PHEMA in water and in air. 14
Figure 2-7 Illustration of the grafting structures of (a) brush-like PEGMA, and (b) network-like PEGMA on the PVDF membrane surface 17
Figure2-8. Functionalization of poly(4-VP) leading to cationic polyelectrolytes 1, polybetaines 2, and polysulfobetaines 3. Adapted from 19
Figure 2-9. Molecular design of zwitterionic interfaces for excellent hemocompatibility. 21
Figure 2-10. Ion-pair anchoring of zwitterionic copolymer brushes 23
Figure 2-11. Simplified mechanism of RAFT method 31
Figure 2-12. Simplified schematic of ATRP. 32
Figure 2-13 Surface modification by grafting hexyl-PVP copolymers onto silicon wafer, as reported by Tiller et al research 34
Figure 2-14 Surface-Initiated ATRP polymerization reported by Feng et al 34
Figure 2-15 Schematic representation of the mechanism of non-thrombogenicity observed on MPC polymer 36
Figure 2-16. Schematric representation of mechanism of nonthrombogenicity observed on poly MPC-co-BMA. 36
Figure 2-17. Schematic illustration of the preparation of the PEGylated PSf membranes via the incorporation of PEO–PPO–PEO tri-block copolymers: (a) liquid-induced phase separation (LIPS); (b) vapor-induced phase separation (VIPS). Adapted from Antoine et al 52
Figure 3-1. Schematic reaction of poly(4VP-r-ODA) and its zwitterionic form 41
Figure 4-1. 1H-NMR Spectra of P4VP-r-PODA copolymer and its zwitterionic form zP4VP-r-PODA prepared in this work. 49
Figure 4-2. Experimental coating density, as a function of the concentration of copolymer in the coating bath. 51
Figure 4-3. SEM characterization of virgin and self-assembled membranes at a 1K magnification. 52
Figure 4-4. FT-IR spectra of virgin PP and self-assembled membranes coated with (a) P4VP-r-PODA copolymer and (b) zwitterionic copolymer zP4VP-r-PODA. 52
Figure 4-5. N1s core level spectra of virgin PP and self-assembled membranes, before and after conversion of the copolymer into its final zwitterionic form. 53
Figure 4-6. Hydration Properties of virgin PP and self-assembled membranes coated with P4VP-r-PODA copolymer and zwitterionic zP4VP-r-PODA copolymer. 54
Figure 4-7. Resistance of self-assembled membranes to protein adsorption before and after zwitterionization of the copolymer. 55
Figure 4-8. Resistance of self-assembled membranes to Gram negative E.Coli attachment before and after zwitterionization of the copolymer. 56
Figure 4-9. Resistance of self-assembled membranes to Gram positive S.epidermidis attachment before and after zwitterionization of the copolymer 57
Figure 4- 10. Adhesion and full scale activation of platelets onto virgin PP membrane and self-assembled membranes. 58
Figure 4-11. Adhesion of RBC, WBC and platelets onto virgin PP membrane and self-assembled membranes with copolymer before and after zwitterionization. 60
Figure 4-12. (a)Whole blood cells adhesion onto polypropylene and self-assembled polypropylene membranes.(b)Quantitative analysis of blood cells adhesion onto polypropylene and self-assembled polypropylene membranes .61
Figure 4-13. Hemolytic activity of polypropylene and self-assembled polypropylene membranes. 62
Figure 4-14. FT-IR spectra of membrane coated with zwitterionic zP4VP-r-PODA copolymer before and after immersion for 1, 2, 3 and 4 weeks in DI water. 63

List of tables

Table 2-1. Evolution of Biomaterials for Human Use 4
Table2-2. Estimated market for biomaterials in the United States; Total Global Market Is Typically Two to Three Times the U.S Market 7
Table 2-3 Simulation Results for Protein and the SAMs 16
Table 2-4 Summary of development of antifouling surface design 25
Table2-5 The composition of human blood cells 27
Table 2-6 Concentration of plasma protein 27
Table 2-7 Composition of human plasma 28
Table 2-8 Common blood contacting medical devices (estimated usage worldwide) 29
Table2-9. Comparison of surface modification processes to form zwitterionic coatings. 35
Table 3-1 Materials were used in this research 40
Table 4-1. Solubility data of copolymers. 50
References

[1] Ramakrishna, S.; Ramalingam, M.; Kumar, T. S. S.; Winston O.Soboyejo, Biomaterials: A nano approach CRC Press, 2010
[2] Buddy, D. R.; Allan, S. H.; Frederick, J. S.; Jack, E. L. An introduction to materials in medicine, Academic press, 2013
[3] Jenny A. L.; Krystyn, J. V. V.; Michael, F. R. Macromolecules, 42(2009) 8573–8586
[4]William, A. R.; MPH David J. W. MD; MPH American Journal of Infection Control 41 (2013) S2-S5
[5]Jens, A. A.; Derek, M.; Daisuke, U.; Colin, D.; Norbert, T.; Kai, B. Environmental Toxicology and Chemistry 26 (2007) 1081–1089.
[6] Cornell, R. J.; Donaruma, L.G. J. Med. Chem. 8 (1965), 388-390
[7] Panarin, E.F.; Solovski, M.; Ekzemply, O. Khim.-Farm. Zh. 5 (1971), 24-28.
[8] Timofeeva, L.; Kleshcheva, N. Appl. Microbiol. Biotechnol. 89 (2011), 475-492.
[9] Felix S.; Joerg C. T.; Polymers 4 (2012) 46-71
[10]Genzer, J.; Efimenko, K. Biofouling 22 (2006), 339–360.
[11] Zhang, J.; Song, Z.Y.; Li, B.A.; Wang, Q.; Wang, S. E.; Desalination 324 (2013) 1–9
[12] Lewis, K.; Klibanov, A. M. Trends Biotechnol, 23 (2005), 343–348.
[13] Bromberg, L.; TA, H. Polymer 48 (2007), 7490–7498.
[14] Kenawy, E.; Worley, S.; Broughton, R. Biomacromolecules 8 (2007), 1359–1384
[15]Danese, P. N. Chem. Biol. 9 (2002) 873-880.
[16]Chau, H. H.; Jan, T.; Christina, S.; Raft, T. T. Adv. Mater 16 (2004), 957-961
[17]Kuo, P. L.; Chuang, T.F; Wang, H.L J.coat. Technol. 71(1999), 77-83
[18]Ibbtison, D.; Johnson, A.F.; Morley, N.J.; Penman, A.K. Acs Symp. Ser. 322(1986), 326-340.
[19]Qian, P.Y; Xu, Y.; Fusetani, N. Biofouling 26 (2010) 223-234
[20] Cao, Z. Q.; Luo M.; Jose M.; Jean-Rene Ella-Menye, Zhang, L.; Xue, H.; Jiang, S.Y. Angew. Chem. Int. Ed. 51(2012), 2602–2605
[21]Cheng, G.; Xue, H.; Zhang, Z.; Chen, S.; Jiang, S.A. Angew. Chem.Int.Ed 47 (2008) 8831-8834.
[22]Laloyaux, Adv. Mater 22 (2010) 5024-5028.
[23]Kocer, H. B.; Cerkez, I.; Worley, S.D.; Broughton, R.M.; Huang, T.S. ACS Appl. Mater. Interfaces 3 (2011) 2845-2850.
[24] Sambhy,V.; MacBride, M. M.; Peterson, B. R.; Sen, A. J. Am. Chem. Soc., 128(2006), 9798-9808
[25]Kocer, H.B.; Cerkez, I.; Worley, S.D.; Broughton, R.M.; Huang, T.S. ACS Appl. Mater. Interfaces 3(2011) 2845-2850.
[26] Bieser, A. B.; Thomann,Y.; Tiller, J. C. Macromol. Biosci. 11 (2011) 111–121
[27]Li,Z.; Lee, D.; Sheng, X. X.; Cohen, R. E.; Rubner, M. F. Langmuir 22 (2006) 9820-9823
[28] Sin, M. C.; Chen, S. H.; Chang, Y. Polymer Journal 46 (2014), 436–443
[29] Leduc, E. H.; Holt, S. J. The Journal of Cell Biology, 26 (1965), 137-155
[30]Chiaki Yoshikawa, Atsushi Goto, Yoshinobu Tsujii, Takeshi Fukuda, Tsuyoshi Kimura, Kazuya Yamamoto, and Akio Kishida, Macromolecules 39 (2006), 2284-2290
[31] Ratner, B. D.; Weathersby, P. K.; Hoffman, A. S. Michael A. Kelly, Scharpen, L. H. Journal Applied Polymer Science 22 (1978) 643-664.
[32]Chen, Q.; Zhang, D.; Somorjai, G.A.; Bertozzi, C.R. J. Am. Chem. Soc. 121 (1999) , 446-447.
[33] Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M. Surface Science 603 (2009) 2422–2429
[34] Davis, F. F. Advanced Drug Delivery Reviews 54 (2002) 457–458
[35]Davis, F. F., V. E. T.; Palczuk, N. C. (1979) US 4179337
[36]Toray Industries Incorporated (1984) US 4424311 A
[37]Prime, K.L; Whitesides, G.M., J. Am. Soc. 115 (1993) 10714-10721
[38]Pale-Grosdemange, C., Simon, E.S.; Prime, K.L; Whitesides, G.M, J. Am. Chem. Soc 113 (1991) 12-20.
[39]Prime, K.L.; Whitesides, G.M. Science 252 (1991) 1164-1167
[40] Kane, R. S.; Deschatelets, P.; Whitesides, G. M. Langmuir 19 (2003) 2388-2391.
[41] Zheng, J.; Li, L.; Chen, S.; Jiang, S.Y. Langmuir, 20(2004) 8931-8938
[42] Chang, Y.; Ko, C.Y.; Shih, Y. J.; Quemener, D.; Deratani, A.;Wei, T. C.; Wang, D. M.; Lai, J. Y. Journal of Membrane Science 345 (2009) 160-169.
[43] Chang, Y.; Shih, Y. J.; Ko, C.Y.; Jhong, J. F.; Liu, Y. L.; Wei, T. C. Langmuir 27 (2011) 5445–5455
[44]Ladd, J.; Zhang, Z.; Chen, S. F.; Hower, J. C.; Shao, Y. J. Biomacromolecules 9 (2008) 1357-1361.
[45]A. Roosjen, H. C. Van der Mei, H. J. Busscher, W. Norde, Langmuir 20(2004) 10949-10955.
[46] Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Langmuir 17 (2001), 5605-5620.
[47] Liu, S. Y; Armes, S. P. Angew. Chem. Int. Ed. 41 (2002) 1413-1416
[48]Lowe, A. B.; McCormick, C. L. Chem. Rev. 102 (2002), 4177-4189
[49] Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N. Journal of Biomedical Materials Research, 26(1992), 1543-1552
[50] Iwasaki, Y.; Ishihara, K.; Anal Bioanal Chem 381 (2005) 534–546.
[51] Zwaal, R.F.A.; Schroit, A.J. Blood, 89 (1997) 1121-1132
[52]Ladenheim, H.; Morawetz, H. J. Polym. Sci., 26 (1957), 251-254
[53]Thomas, D. B.; Vasilieva, Y. A.; Armentrout, R. S.; McCormick, C. L. Macromolecules, 36 (2003), 9710-9715
[54]Gao, C. L.; Li, G. Z.; Xue, H.; Yang,W.; Zhang, F. B.; Jiang, S.Y. Biomaterials 31 (2010) 1486-1492
[55] Fevola, M. J.; Bridges, J. K.; Kellum, M. G.; Hester, R. D.; McCormick, C. L.; Journal of Applied Polymer Science, 94(2004), 24-39
[56]Zhang, Z., Chao, T.; Chen, S. F.; Jiang, S. Y. Langmuir 22 (2006) 10072-10077
[57] Wu, L.; Jasinski, J.; Krishnan, S. Journal of Applied Polymer Science, 124 (2012), 2154-2170
[58]Hart, R.; Timmerman, D. J. Polym. Sci. 28 (1958), 638-640
[59] Soto, M.; V. M.; Galin, J. C. Polymer 25(1984) 121-128.
[60] Soto, M. V. M.; Galin, J. C. Polymer 25(1984), 254-262.
[61]Ehrmann, M.; Mathis, A.; Meurer, B.; Scheer, M.; Galin, J. C. Macromolecules 25 (1992) 2253-2261.
[62]Schulz, D. N.; Peiffer, D. G.; Agarwal, P. K.; Larabee, J.; Kaladas,J. J.; Soni, L.; Handwerker, B.; Garner, R. T. Polymer 27(1986) 1734-1742.
[63] Petruczok, C. D.;R. Yang , K. K. Gleason , Macromolecules , 46 (2013) ,1832 – 1840
[64]M. E. Alf ; A. Asatekin , M. C. ; Barr, S. H.; Baxamusa , H.; Chelawat ,G.; Ozaydin-Ince , C. D.; Petruczok , R.; Sreenivasan , W. E.; Tenhaeff ,N. J.; Trujillo , S.; Vaddiraju , J.; Xu, K. K.; Gleason , Adv. Mater. 22(2010) 1993 – 2027
[65]Yang, R.; Jang, H. C.; Stocker, R.; Gleason, K. K. Adv. Mat. 26 (2014) 1711-1718
[66] Jaeger, W.; Wendler, U.; Lieske, A.; Bohrisch, J.; Wandrey, C. Macromol. Symp. 161(2000) 87-96
[67] Chang, Y.; Chen, S.F.; Zhang, Z.; Jiang, Y.J. Langmuir, 22(2006), 2222-2226.
[68] Cheng, G.; Zhang, Z.; Chen, F.C.; Bryers, J.D.; Jiang, S.Y. Biomaterials 28 (2007) 4192–4199
[69] Cheng, G.; Xue, H.; Zhang, Z.; Chen, F.S.; Jiang, S.Y. Angew. Chem. Int. Ed. 47 (2008) 8831–8834
[70]Ladd, J.; Zhang, Z.; Chen, F.C.; Hower, J. C.; Jiang, Y.S. Biomacromolecules, 9 (2008) 1357-1361.
[71] Chang, Y.; Shu, S.H.; Shih,Y.J.; Chu, C.W.; Ruaan, R. C.; Chen, W.Y. Langmuir 5 (2010) 3522–3530.
[72]Chang, Y.; Yandi, W.; Chen, Y. W.; Shih, Y. J.; Yang, C. C.; Chang, Y.; Ling, Q. D.; Higuchi, A. Biomacromolecules 11 (2010) 1101–1110
[73] Shih, Y. J.; Chang, Y. Langmuir 26 (2010) 17286-17294
[74] Chang, Y.; Chang, W. J.; Shih, Y. J.; Wei, T. C.; Hsiue, G. H. ACS Applied Materials Interfaces 3 (2011) 1228-1237
[75] Chang, Y.; Shih , Y.J.; Lai, C. J.; Kung, H. H.; Jiang. S.Y. Adv. Funct. Mater. 23 (2013) 1100–1110
[76] Jhong, J. F.; Venault, A.; Hou, C. C.; Chen, S. H.; Wei, T. C.; Zheng, J.; Huang, J.; Chang, Y. ACS Appllied Materials Interfaces 5 (2013) 6732−6742.
[77] Jhong, J. F.; enault, A.; Liu, L. Y.; Zheng, J.; Chen, S. H.; Higuchi, A.; Huang, J.; Chang, Y. ACS Appl. Mater. Interfaces 6 (2014) 9858-9870
[78]Venault, A.; Yang; H. S.; Chiang, Y. C.; Lee, B. S.; Ruaan, R.C.; Chang Y.; ACS Applied Mater Interfaces. 6 (2014) 3201-3210.
[79] Kawabata, N.; Nishiguchi, M. Applied and Environmental Microbiology 54 (1988) 2532-2535.
[80] Convertine, A. J.; Sumerlin, B. S.; Thomas, D. B.; Lowe, A. B.; McCormick, C. L. Macromolecules 36 (2003) 4679-4681.
[81] Gatica, N.; Gargallo, L.; Radic, D. Polymer International 45 (1998) 285-290.
[82] Xia, J.H.; Zhang, X.; Matyjaszewski, K. Macromolecules, 32 (1999) 3531-3533.
[83] Park, E. S.; Kim, H. S.; Kim, M. N.; Yoon, J. S. European Polymer Journal 40 (2004) 2819–2822
[84] Lienkamp, K.; Tew, G. N. Chemical European Journal 15 (2009) 11784 – 11800.
[85] Kawabata, N.; Nishiguchi, M. Applied and environmental microbiology, 54 (1988) 2532-2535
[86] Convertine, A. J.; Sumerlin, B. S.; Thomas, D. B.; Lowe, A. B.; McCormick, C. L. Macromolecules 36 (2003) 4679-4681.
[87] Xia, J.H.; Zhang, X.; Matyjaszewski, K. Macromolecules, 32 (1999) 3531-3533.
[88] Yang, R.; Jang, H. C.; Stocker, R.; Gleason, K. K. Advanced Materials 26 (2014) 1711–1718.
[89] Petruczok, C. D.; Yang, R.; Gleason, K. K. Macromolecules 46 (2013), 1832−1840.
[90]Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M. Proceedings of the National Academy of Sciences of the United States of America 98 (2001) 5981-5985.
[91]M.M The physiological mechanisms of haemostatis – Blood platelets. Hologramme Ed: Neuily-sur-Seine, 1988
[92] Ratner, B. D. Biomaterials 28 (2007) 5144–5147
[93] Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 49 (2008) 1079-1131
[94](Bill) Chong, Y. K.; Krstina, J.; Le, P. T. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Macromolecules 36(2003) 2256-2272
[95]Chiefari J., Mayadunne R.T.A.; Moad C.L.; Moad G.; Rizzardo E.; Postma A. Macromolecules 36(2003) 2273-2283
[96] Cheng, Z. P.; Zhu, X. L.; Fu, G. D.; Kang, E. T.; Neoh, K. G. Macromolecules 38 (2005) 7187-7192
[97] Wan, L. S.; Lei, H.; Ding, Y.; Fu, L.; Li, J.; Xu, Z. K. J. Polym. Sci. Part A Polym. Chem. 47(2009) 92-102
[98] Bouhamed, H.; Boufia, S.; Magnin, A. Journal of Colloid and Interface Science 312 (2007) 279–291
[99] Wang, J.S.; Matyjaszewski, K. J. Am. Chem. Soc. 117 (1995) 5614-5615
[100] Lloyd (Ed.), D.R. Materials Science of Synthetic Membranes, ACS Symp. Ser. 269, Chap. 1, Washington, D.C. 1985
[101] Kato. M.; Sawamoto, M. K. M.; Higashimura, T. Macromolecules 28 (1996) 1721-1723
[102] Holmlin, R. E.; Chen, X. X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M. Langmuir 17 (2001) 2841–2850
[103, Chun-Jen Liao,Kim Lewis, and Alexander M. Klibanov, PNAS 98(2001) 5981-5985
[104]Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M. Biotechnology and bioengineering 79(2002) 465-471
[105]Feng, W.; Zhu, S. P.; Ishihara, K.; Brash, J. L. Langmuir 21 (2005) 5980-5987
[106] Dion, C. A. D.; Tavares, J.R. Powder Technology 239 (2013) 484–491
[107] Gao, C. L.; Li, C. Z.; Xue, H.; Yang, W.; Zhang, F. B.; Jiang, S. Y. Biomaterials 31 (2010) 1486–1492
[108] Chang, Y.; Shih, Y. J.; Lai, C. J.; Kung, H. H.; Jiang, S. Y. Adv. Funct. Mater. 23 (2013) 1100–1110
[109]Pan, Y.; Xiao, H. Rendering Rayon Fibres. Adv. Mater. Res. 236-238 (2011) 1103-1106.
[110]Xing, B.G.; Yu, C.W.; Chow, K.H.; Ho, P.L.; Fu, D.G.; Xu, B. J. Am. Chem. Soc. 124 (2002) 14846-14847.
[111] Fuchs, A.D.; Tiller, J.C. Angew. Chem. Int. Ed. 45 (2006) 6759-6762.
[112] Xu, J.; Xia, J. F; Lin, Z. Q. Angew. Chem. 119 (2007) 1892-1895
[109] Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Adv. Mater. 11(1999) 579-585
[113] Rahikkala, A.; Soininen, A. J.; Ruokolainen, J.; Raula, R. M. J.; Kauppinena, E. I. Soft Matter 9 (2013) 1492–1499
[114] Andreou, I.; Amenitsch, H.; Likodimos, V.; Falaras, P.; Koutsoukos, P. Q.; Leontidis, E. Materials 6 (2013) 1467-1484
[115] Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 95 (1995), 2229-2260
[116] Stang, P. J.;Olenyuk, B. Accounts of Chemical Research 30 (1997) 502-518
[117]Venault, A.; Chang, Y.; Wang, D. M.; Lai, J, Y. Journal of Membrane Science 423-424 (2012) 53-64
[118]Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D.; Higuchi, A.; Lai, J, Y. Journal of Membrane Science 403-404 (2012) 47-57
[119] Venault, A.; Chang, Y.; Wang, D. M.; Bouyer, D. Polymer Reviews 53 (2013) 568-626
[120] Zhang, J.; Song, Z.Y.; Li, B. A.; Wang, Q.; Wang, S. C. Desalination 324 (2013) 1–9
[121] Chang, Y.; Chang, W. J.; Shih, Y. J.; Wei, T. C.; Hsiue, G. H. ACS Appl. Mater. Interfaces 3 (2011) 1228−1237.
[122] Tetsuji, H. O.; Hlideaki, S.; KuDosEld, T. I.; Kotaba. T. Bull. Inst. Chem. Res., 66 (1988)283-296
[123] Rodrigues, A. S. S.; Aguiar, A. P.; Mônica, R. M. P. A.; Maria, C. C. S. J. Braz. Chem. Soc., 18(2007) 431-436
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔