跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉沛謙
研究生(外文):Pei-Chien Liu
論文名稱:常壓電漿接枝與紫外光接枝雙離子性材料於高分子薄膜改質之比較研究
論文名稱(外文):Comparison of Atmospheric-pressure Plasma Treatment and Ultraviolet Induced Treatment in Modified PP Membranes
指導教授:魏大欽
指導教授(外文):Ta-Chin Wei
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:常壓電漿紫外光改質兩性離子抗生物沾黏膜材
外文關鍵詞:DBDUV-graftingzwitterionic polymeranti-biofouling membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試利用電漿與紫外光對聚丙烯膜材進行接枝聚硫代甜菜鹼,製備出含兩性離子特性之仿生薄膜,期望能有效減少蛋白質貼附的現象。各改質處理後的膜材利用水接觸角、全反射式傅立葉轉換紅外線光譜儀、掃描式電子顯微鏡、X射線光電子能譜儀分析表面化學與物理特性,再進行蛋白質吸附及細菌貼附測試,瞭解膜材抗生物沾黏之效果。除比較上述兩種改質方法外,並探討電漿接枝之主因是電漿反應物種還是紫外光所造成,因此在電漿改質膜材中覆蓋石英玻璃,以隔絕電漿反應物種,探討電漿紫外光造成之影響。
實驗結果發現不論是電漿改質、電漿紫外光改質與紫外光改質,皆能成功接枝聚硫代甜菜鹼於聚丙烯膜材上,PP-g-SBMA改質膜材,經由XPS發現各改質,隨著改質時間增加,N與S含量也有增加,XPS細掃後觀察,各改質也隨改質時間增加N1s/S2p保有度也越好,生物分子沾黏實驗中,電漿改質90秒與紫外光改質60分鐘,皆能有效抵抗相反電性的蛋白質吸附以及減少大部分細菌的貼附,紫外光改質於BSA蛋白循環測試有88.7%的水通量恢復效能,電漿改質也有87.3%水通量恢復效能,具備可利用性的價值。


In this research, we compared the atmospheric-pressure dielectric barrier discharge (APDBD) plasma grafting with the UV-induced grafting in the surface modification of membranes. Sulfobetaine (SBMA) was grafted from the polypropylene membrane (PP) in order to reduce bio-fouling. The functional groups of the monomer SBMA are positive charge (N+(CH3)3) and negative charge (SO3-). The chemical composition and surface morphology of the modified PP membranes were characterized by FTIR-ATR, SEM, and XPS. In addition, the anti-biofouling capabilities of preparing membranes were characterized by the protein adsorption of bovine serum albumin (BSA) and lysozyme (LY). The antibacterial property was tested via attachment ability with Escherichia coli. Finally, cyclic filtration test was done in BSA solution for bio-separation application. Moreover, to investigate whether the main factor of plasma grafting was reactive species or UV radiation from plasma, we covered the membrane with quartz plate to inhibit the reaction between reactive plasma species with membrane and discussed the effect of UV from plasma to the grafting of SBMA on PP.
Both methods, UV treatment at 60 min and APDBD treatment at 90s, showed significant anti-biofouling capability. The PP-g-SBMA membranes by UV treatment and APDBD were found to effectively resist protein adsorption and exhibit a very low bio-fouling characteristic during cyclic-filtration. Flux recovery of water (FRwi) in UV treated and APDBD treated are 88.7% and 87.3%, respectively.


目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 11
1-1 研究源起 11
1-2 研究內容 12
第二章 文獻回顧 13
2-1 聚丙烯薄膜之簡介 13
2-2 生醫材料之生物相容性 14
2-2.1材料表面與蛋白吸附機制[7] 15
2-3 雙離子性高分子材料 18
2-3.1 PC結構之雙離子性高分子 19
2-3.2 SB結構之雙離子性高分子[7] 20
2-3.3 CB類型雙離子性高分子[7] 23
2-4 製備雙離子薄膜的方法 24
2-4.1 電漿改質 25
2-4.2 紫外光改質 31
第三章 研究理論 35
3-1 研究流程 35
3-2 實驗設備 36

3-2.1 常壓輝光介電質放電系統 36
3-2.2 石英玻璃示意圖 38
3-2.3 紫外光燈系統 41
3-2.4 基材及藥品 43
3-3 實驗步驟 45
3-3.1 電漿改質與電漿紫外光改質 45
3-3.2 紫外光改質 46
3-3.3 物理性質量測 47
3-3.4 化學性質量測 48
3-4 儀器原理 53
3-4.1 掃描式電子顯微鏡 53
3-4.2 全反射式傅立葉轉換紅外線光譜儀 54
3-4.3 光學放射光譜儀[46] 55
3-4.4 X射線光電子能譜儀 55
第四章 結果與討論 58
4-1 雙離子薄膜製備 59
4-1.1常壓電漿改質參數探討 59
4-1.2物理型態分析 66
4-1.3化學結構分析 72
4-2 抗生物沾黏效果 87
4-2.1 蛋白質BSA吸附測試 88
4-2.2 蛋白質LYZ吸附測試 91
4-2.3細菌貼附測試 95
4-3 蛋白質循環過濾測試 97
4-3.1蛋白質循環過濾結果分析 97
4-3.2水通量恢復效能討論 99
第五章結論 103
參考文獻 105

表目錄
表2- 1文獻製備雙離子薄膜材料 34
表3- 1實驗用氣體和藥品…………………………………………….………….... 44
表3-2 PP-c-SBMA特徵峰 48
表3-3氮分峰(N1s)與硫分峰(S2p)之束縛能(Binding Energy)[42] 49
表3-4 XPS操作工作參數 57
表4-1電漿改質下PP-g-SBMA之IR半定量分析…………………………….….74
表4-2電漿紫外光改質下PP-g-SBMA之IR半定量分析 75
表4-3紫外光改質下PP-g-SBMA之IR半定量分析 76
表4-4膜材PP與單體SBMA之理論元素比例 78
表4-5電漿改質下之XPS全譜圖元素比例 78
表4-6電漿紫外光改質下之XPS全譜圖元素比例 78
表4-7紫外光改質下之XPS全譜圖元素比例 79
表4-8電漿改質下PP-g-SBMA之細部分峰之N+/S-比例 86
表4-9電漿紫外光改質下PP-g-SBMA之細部分峰之N+/S-比例 86
表4-10紫外光改質下PP-g-SBMA之細部分峰之N+/S-比例 86
表4-11蛋白質相對通量之可逆與不可逆百分比 102
表4-12其他文獻之蛋白循環過濾結果比較 102


圖目錄
圖2-1 生物材料相容性之生物的反應性及材料的反應[6] 14
圖2-2 生醫材料植入體內時局部組織對異物反應之過程[8] 15
圖2-3 利用PEO側鏈阻擋蛋白吸附[11] 17
圖2-4 蛋白質吸附表面的三種模式[12] 17
圖2-5 MPC結構圖[16] 19
圖2-6 SBMA化學結構式[17] 20
圖2-7 不同正負電荷排列結構對蛋白質的吸附現象[18] 21
圖2-8 (a)ATRP法製備PVDF-g-P(SBMA) (b)抗蛋白質示意圖[19] 21
圖2-9 E. coli 於48hr長時效貼附結果於不同單體配比下[20] 22
圖2-10 CBMA分子結構 23
圖2-11 (a)PVDF-g-P(CBMA)示意圖 (b)不同pH值之蛋白質吸附[21] 23
圖2-12 玻璃表面電漿清潔製程[3] 26
圖2-13 同心圓管玻璃裝置圖[24] 26
圖2-14 介電質放電電極組合[25] 27
圖2-15 (a)游絲放電 (b)輝光放電[26] 27
圖2-16 輝光放電(Glow discharge)[27] 27
圖2-17 電暈放電形式[28] 28
圖2-18 電漿活化接枝反應機制圖[29] 29
圖2-19 PVDF-g-P(SBMA) (a)纖維蛋白吸附 (b)血小板貼附[29] 29
圖2-20 改質薄膜纖維蛋白吸附測試:(a)低壓改質 (b)常壓改質[30] 30
圖2-21 UV誘導接枝反應機制 32
圖2-22 UV誘導接枝示意圖[33] 32
圖2-23 單循環過濾測試(a)BSA (b)Lysozyme[20] 33

圖3-1研究流程圖…………………………………………………………………….35
圖3-2電漿反應器示意圖………………………………………………………………………………………37
圖3-3 DBD Reactor示意圖 37
圖3-4 石英玻璃覆蓋膜材之情況 38
圖3-5 石英玻璃在不同波長下與穿透量關係 39
圖3-6 電漿與基材覆蓋石英玻璃下之電漿改質OES譜 40
圖3-7 手提UV燈具裝置示意圖 41
圖3-8 恆壓過濾裝置(Dead-end filtration apparatus)[41] 42
圖3-9 聚丙烯薄膜結構式 43
圖3-10 聚硫代甜菜鹼結構式 43
圖3-11 二苯基甲酮結構式 44
圖3-12 PP膜材與PP-c-SBMA之FTIR特徵峰圖譜 48
圖3-13 SEM儀器構造示意圖[44] 54
圖3-14 傅氏轉換紅外線光譜儀[45] 55
圖3-15 光電子產生示意圖[49] 57
圖3-16 XPS裝置示意圖[49]………………………………………………..…………………………….58
圖4-1常壓電漿改質在不同時間下之塗佈密度與接枝密度……………………..60
圖4-2 電漿紫外光改質在不同時間下之塗佈密度與接枝密度 ..61
圖4-3 電漿與電漿紫外光改質在不同時間下之膜面溫度變化…………….…….61
圖4-4 照射20 min下接枝密度與BP濃度關係 63
圖4-5 照射20分鐘下接枝密度與距離關係 63
圖4-6 紫外光改質在不同時間下塗佈密度與接枝密度 64
圖4-7 紫外光改質在不同時間下之膜面溫度變化 65
圖4-8 電漿改質 PP-g-SBMA之SEM基材表面結構 (5 k) 67
圖4-9 電漿紫外光改質PP-g-SBMA之SEM基材表面結構 (5 k) 68
圖4-10 紫外光改質 PP-g-SBMA之SEM基材表面結構 (5 k) 69
圖4-11 電漿改質在不同時間下與水接觸角關係 70
圖4-12 電漿紫外光改質在不同時間下與水接觸角關係 71
圖4-13 紫外光改質在不同時間下與水接觸角關係 71
圖4-14 PP膜材與PP-c-SBMA之FTIR之圖譜 72
圖4-15 電漿改質下之FTIR-ATR圖譜 74
圖4-16 電漿紫外光改質下之FTIR-ATR圖譜 75
圖4-17 紫外光改質下之FTIR-ATR圖譜 76
圖4-18 PP-c-SBMA之N1s及S2p細部分峰 80
圖4-19 電漿改質之N1s及S2p細部分峰 82
圖4-20 電漿紫外光改質之N1s及S2p細部分峰 83
圖4-21 紫外光改質之 N1s及S2p細部分峰(續) 84
圖4-22 PP-g-SBMA N1s及S2p細部分峰 85
圖4-23 改質後PP-g-SBMA與生物分子相互作用之示意圖 87
圖4-24 紫外光改質下之BSA吸附測試 89
圖4-25 電漿改質下之BSA吸附測試 90
圖4-26 電漿紫外光改質下之BSA吸附測試 90
圖4-27 紫外光改質下之LYZ吸附測試 91
圖4-28 電漿改質下之LYZ吸附測試 92
圖4-29 電漿紫外光改質下之LYZ吸附測試 92
圖4-30 不同改質下BSA相對吸附量對水接觸角關係 93
圖4-31 不同改質下LYZ相對吸附量對水接觸角關係 94
圖4-32 雷射共軛焦掃描式顯微鏡觀察下PP-g-SBMA之大腸桿菌吸附型態 96
圖4-33 各改質下薄膜之蛋白循環過濾測試 99
圖4-34 各種不同改質薄膜於三循環蛋白過濾之水通量恢復效能 101


參考文獻
[1]賴君義, "薄膜科技," 科學發展,vol. 429 pp. 5, 2008.
[2]Z. Xin, S. Yan, J. Ding, Z. Yang, B. Du, and S. Du, "Surface modification of polypropylene nonwoven fabrics via covalent immobilization of nonionic sugar-based surfactants," Applied Surface Science, vol. 300, pp. 8-15, 2014.
[3]劉志宏, 陳志瑋, and 林春宏, "大氣壓電漿表面改質技術與其應用介紹,"化工資訊與商情," pp 87-98, 2006.
[4]賴耿陽編著, "聚丙烯樹脂PP原理與應用," 復漢出版社, 1999.
[5]黃世偉, "高分子材料與醫療器材," 科學發展, vol. 455, pp. 14-19, 2010
[6]薛敬和, "生命科學與工程," 藝軒圖書出版社, p. pp.365, 2010.
[7]施曉琳, "常壓電漿接枝類雙離子材料於高分子薄膜之研究," 中原大學碩士論文, pp. 1-134, 2013.
[8]B. D. Ratner and S. J. Bryant, ""Biomaterials: where we have been and where we are going vo," vol. Annu Rev Biomed Eng, pp. pp. 41-75, 2004.
[9]E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein," Langmuir, vol. 17, pp. 5605-5620, 2001/09/01 2001.
[10]V. Hlady and J. Buijs, "Protein adsorption on solid surfaces," Current Opinion in Biotechnology, vol. 7, pp. 72-77, 1996.
[11]M. Amiji and K. Park, "Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers," Biomaterials, vol. 13, pp. 682-692, 1992.
[12]A. Halperin, "Polymer brushes that resist adsorption of model proteins: Design parameters," Langmuir, vol. 15, pp. 2525-2533, 1999.
[13]C. Sousa, P. Teixeira, and R. Oliveira, "Influence of surface properties on the adhesion of Staphylococcus epidermidis to acrylic and silicone," International journal of biomaterials, vol. 2009, 2009.
[14]游士賢, "雙離子性刷狀高分子於聚苯乙烯組織培養皿之表面接枝控制與其抗菌性質之研究," 國立中央大學碩士論文, pp. pp.1-119, 2009.
[15]Y. Kadoma, N. Nakabayashi, E. Masuhara, and J. Yamauchi, "Synthesis and Hemolysis Test of the Polymer Containing Phosphorylcholine Groups," KOBUNSHI RONBUNSHU, vol. 35, pp. 423-427, 1978.
[16]K. Ishihara, T. Ueda, and N. Nakabayashi, "Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes," Polym J, vol. 22, pp. 355-360, 05//print 1990.
[17]Y. Chang, S. Chen, Z. Zhang, and S. Jiang, "Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines," Langmuir, vol. 22, pp. 2222-2226, 2006.
[18]R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, and G. M. Whitesides, "Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer," Langmuir, vol. 17, pp. 2841-2850, 2001/05/01 2001.
[19]J.-H. Li, M.-Z. Li, J. Miao, J.-B. Wang, X.-S. Shao, and Q.-Q. Zhang, "Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive," Applied Surface Science, vol. 258, pp. 6398-6405, 2012.
[20]Y.-H. Zhao, X.-Y. Zhu, K.-H. Wee, and R. Bai, "Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers," The Journal of Physical Chemistry B, vol. 114, pp. 2422-2429, 2010.
[21]Q. Zhou, X.-P. Lei, J.-H. Li, B.-F. Yan, and Q.-Q. Zhang, "Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization," Desalination, vol. 337, pp. 6-15, 2014.
[22]楊順文, "電漿聚合碳氮層-TPX複合膜應用於氧氮分離薄膜之應用," 中原大學碩士論文, pp. 1-122, 2002.
[23]Y. Takemura, N. Yamaguchi, and T. Hara, "Study on surface modification of polymer films by using atmospheric plasma jet source," Japanese Journal of Applied Physics, vol. 47, p. 5644, 2008.
[24]U. Kogelschatz, "Dielectric-barrier discharges: their history, discharge physics, and industrial applications," Plasma chemistry and plasma processing, vol. 23, pp. 1-46, 2003.
[25]B. E. U. Kogelschatz, and W. Egli, ""From ozone generator to flat television screen history and future potential of dielectric-barrier discharges," ure and Applied Chemistryvol. 71, pp. 1819-182, 1999.
[26]許馨勻, "常壓電漿製備酸鹼敏感與抗生物沾黏薄膜之研究," 中原大學化學工程研究所學位論文, pp. 1-104, 2012.
[27]蔡怡妮, "平板式常壓電漿快速接枝甲基丙烯酸聚乙二醇 酯在聚偏二氟乙烯薄膜之研究," 中原大學化學工程研究所學位論文, pp. 1-114, 2011.
[28]P. A. L. J. S. Chang, and T.Yamamoto, "Corona discharge process,," IEEE Transactions on Plasma Science,vol. 19, p. p. 1152, 1991.
[29]Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, and G.-H. Hsiue, "Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization," ACS applied materials &; interfaces, vol. 3, pp. 1228-1237, 2011.
[30]S.-H. Chen, Y. Chang, K.-R. Lee, T.-C. Wei, A. Higuchi, F.-M. Ho, et al., "Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization," Langmuir, vol. 28, pp. 17733-17742, 2012.

[31]H. Ma, R. H. Davis, and C. N. Bowman, "A novel sequential photoinduced living graft polymerization," Macromolecules, vol. 33, pp. 331-335, 2000.
[32]Y.-F. Yang, Y. Li, Q.-L. Li, L.-S. Wan, and Z.-K. Xu, "Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling," Journal of Membrane Science, vol. 362, pp. 255-264, 2010.
[33]H. Ma, C. N. Bowman, and R. H. Davis, "Membrane fouling reduction by backpulsing and surface modification," Journal of Membrane Science, vol. 173, pp. 191-200, 2000.
[34]M. Hadidi and A. L. Zydney, "Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions," Journal of Membrane Science, vol. 452, pp. 97-103, 2014.
[35]Y.-C. Chiang, Y. Chang, A. Higuchi, W.-Y. Chen, and R.-C. Ruaan, "Sulfobetaine-grafted poly (vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property," Journal of Membrane Science, vol. 339, pp. 151-159, 2009.
[36]B. Deng, M. Yu, X. Yang, B. Zhang, L. Li, L. Xie, et al., "Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly (vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization," Journal of membrane science, vol. 350, pp. 252-258, 2010.
[37]Y.-H. Zhao, K.-H. Wee, and R. Bai, "Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method," Journal of Membrane Science, vol. 362, pp. 326-333, 2010.
[38]H.-Y. Yu, J. Zhou, J.-S. Gu, and S. Yang, "Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane," Journal of Membrane Science, vol. 364, pp. 203-210, 2010.
[39]L. Song, J. Zhao, J. Jin, J. Ma, J. Liu, S. Luan, et al., "Fabricating antigen recognition and anti-bioadhesion polymeric surface via a photografting polymerization strategy," Materials Science and Engineering: C, vol. 36, pp. 57-64, 2014.
[40]R. Zhou, P.-F. Ren, H.-C. Yang, and Z.-K. Xu, "Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition," Journal of Membrane Science, vol. 466, pp. 18-25, 2014.
[41]陳佳祐, "陰電性聚氟化乙二烯薄膜之表面親和性控制及其於特定蛋白質辨識與分離效能之研究," 中原大學碩士論文, pp. 1-89, 2010.
[42]X. Shen, Y. Zhao, and L. Chen, "The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance," Biofouling, vol. 29, pp. 991-1003, 2013.
[43] Confocal Microscopes, "Product of A1R+/A1+,"
http://www.nikoninstruments.com/Products/Microscope-Systems/Confocal-Microscopes/A1R-A1-Confocal2

[44]何政恩、高振宏, "SEM/EDS的原理與操作應用之簡介," 化工技術, vol. 1, pp. 102-114, 2003.
[45]Bruker optics, "Product of TENSOR Series," http://www.bruker-optics.com/tensor.html?&;print=1%2525252525253F
[46] 古奕凡, "聚丙烯膜材表面超疏水化電漿改質技術及形成機制之研究," 中原大學
化學工程研究所學位論文, pp. 1-105, 2009.
[47]莊豐憶、楊思明, "X光光電子/歐傑電子能譜儀分析簡介," 化工技術, vol. 11, pp. 126-142,2003.
[48]J. F. W. a. J. Wolstenoholme, "An Introduction to SURFACE ANALYSIS by XPS and AES," pp. 1-226, 2003.
[49]張茂祥, "XPS(ESCA) Instrumentation &; Applications," Thermo Fisher SCIENTIFIC K-Alpha機台簡介, pp. 1-62, 2009.
[50]Y. Chang, C.-Y. Ko, Y.-J. Shih, D. Quémener, A. Deratani, T.-C. Wei, et al., "Surface grafting control of PEGylated poly (vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization," Journal of Membrane Science, vol. 345, pp. 160-169, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top