(44.192.112.123) 您好!臺灣時間:2021/03/04 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐偉恩
研究生(外文):Wei-En Hsu
論文名稱:含甲咪配位基之金屬化合物:四核金屬團簇與配位高分子
論文名稱(外文):Metal Complexes Supported by Formamidinate Ligands: Tetranuclear Clusters and Coordination Polymers
指導教授:陳志德
指導教授(外文):Jhy-Der Chen
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:215
中文關鍵詞:四核金屬團簇甲咪配位基配位高分子
外文關鍵詞:formamidinate ligandcoordination polymertetranuclear complex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討含甲咪配位基之四核金屬團簇與配位高分子的結構與特性,共分五部分:
第一部分: 利用N,N’-bis(pyridine-4-yl)formamidine (4-Hpyf) 甲咪配位基,和含不同鹵素的二鹵化汞HgX2 (X = Cl, Br 與 I) 反應生成二維網狀的配位高分子{[Hg(4-pyf)2]•(THF)}n,1,以及ㄧ維螺旋鏈狀的配位高分子{[HgBr2(4-Hpyf)]•(MeCN)}n,2,和{[HgI2(4-Hpyf)]•(MeCN)}n, 3。化合物2的鏈狀結構以N-H---Br的氫鍵作用力,而化合物3以互補的雙N-H---N氫鍵連結,兩者皆形成二維具sql拓譜學的超分子網狀結構。化合物1的放射光譜位於448 nm,而化合物2與3分別為432與445 nm。利用理論計算得知,化合物1是來自於π → π*的躍遷,而化合物2與3是來自於鹵素之未鍵結的p軌域躍遷至配位基的π*軌域 (n → π*)。
第二部分:利用Mo2(4-pyf)4, 4,與HgBr2、HgI2和HgCl2反應,可以分別得到第一個具有鉬-鉬四重鍵的二維或三維之異核金屬配位高分子[Mo2(4-pyf)4(HgBr2)2•0.5CH2Cl2]n,5、[Mo2(4-pyf)4(HgI2)2]n•0.5CH3OH]n,6,及[Mo2(4-pyf)4(HgCl2)3.6]n, 7。化合物5和6為二維同樣構型的化合物,可簡化成sql拓譜學結構,而化合物7為三維的配位高分子,其拓譜學結構為(32•4)2(34•42•63•74•82)(34•69•79•85•9)。如果不考慮電子密度分布不均的汞原子,此配位高分子則為雙節點的(4,8)-c 4,8T27,(32•53•6)(34•44•512•67•7)之拓譜學結構。利用SEM-EDS鑑定金屬原子分布比例,結果顯示與單晶結構相符。
第三部分:利用一步水熱合成法,以起始物4-aminopyridine和triethylorthoformate與二價醋酸銅,分別在丙酮、二甲基甲醯胺、四氫呋喃、甲醇和乙醇溶劑下反應得到兩種不同構型的二維網狀結構,anti-{[Cu(4-pyf)]•ACT}n,8a、anti-{[Cu(4-pyf)]•DMF}n,8b、anti-{[Cu(4-pyf)]•THF]}n,8c、syn-{[Cu4(4-pyf)4]•2MeOH}n,9a,和以及syn-{[Cu4(4-pyf)4]•2EtOH}n,9b。若上述配方額外加入CuX2 (X = BF4- 與 ClO4-),於乙醇下反應可得到三維的配位高分子, syn-{[Cu3(4-pyf)2](BF4)•2H2O•EtOH}n,10a,和syn-{[Cu3(4-pyf)2](ClO4)•EtOH}n,10b。化合物8a – 10b是第一個具有銅-銅金屬作用力的二維及三維的甲咪配位基之配位高分子。藉由溶劑置換可於二維anti- 和 syn-的配位高分子中觀察到可逆的晶體之間的轉換。而將8c溫度提高時,可以得到中間體syn-{[Cu4(4-pyf)4]•2THF}n,9c。進一步加熱去除溶劑則為不可逆的anti到syn的轉換。無溶劑的產物為具syn構型的化合物9d及9e。螢光光譜中,syn的化合物皆具有放光的性質,而anti的化合物並沒有偵測到放光的現象,這顯示銅-銅金屬作用力於8a – 10b中似乎並不會影響放光機制。二維的anti和syn的化合物具有未鍵結的氮原子,因此可以利用Cd---N的吸引力吸附Cd金屬鹽類。
第四部分:透過逐步反應得到四核與二維的含金和銀與甲咪配位基之無機錯合物,分別為[Au4(4-pyf)4]•4(CH3OH), 11、[Au4(pmf)4], 12與[Ag4(pmf)4],13,Hpmf = N,N’-bis(pyrimidine-2-yl)formamidine,以及配位高分子[Ag2(OAc)(4-pyf)]n,14,和{[Ag2(4-pyf)2]•(THF)}n,15。化合物11、12和13為四核的化合物,具有金屬-金屬作用力,而化合物14為二維的層狀結構,化合物15則是一維的配位高分子。四核的化合物在UV燈下發出藍綠光,此為dσ*/δ* → pπ*所造成的放光機制。化合物11 – 15的放光生命週期為1.06 – 49.15 ns,這些較短的生命週期顯示此放光為螢光的放射。有趣的是,化合物14在固態時放出白光,其CIE的座標為(0.30, 0.38),相當接近於純白光(0.33, 0.33)。
第五部分:利用一步水熱合成法,分別將2-, 3- 和4-(aminomethyl)pyridine 與 triethyl orthoformate 和 Cu(O2CCH3)2,於充滿氮氣的甲醇溶液中進行反應,可得到有機化合物 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz),以及兩個含N2-配位基的三維配位高分子,分別為[Cu2.5(3-mpyf)(N2)1.5]n,16,和{[Cu3(4-Hmpyf)(N2)3]•(CH3OH)}n,17。化合物16與17的銅離子,分別以3-mpyf-橋接與N2-配位基橋接,其銅與銅之間的距離分別為2.5605(8) 與2.4460(13) Å,顯示有銅-銅金屬作用力的存在。化合物16之氮氣陰離子與銅原子之間的鍵結模式為end-on-dinuclear,形成雙節點的(5373)2(5482)的拓譜學結構;而化合物17的氮氣陰離子與銅原子有兩種不同的鍵結模式,分別為end-on-dinuclear和end-on-trinuclear,進而形成雙節點的(53)4(5864788494)2-3,8T16的拓譜學結構。本論文並利用熱分析、紅外線光譜以及拉曼光譜鑑定N2-陰離子。
This dissertation discusses the structures and properties of tetranuclear clusters and coordination polymers supported by the formamidinate ligands, which can be divided into five parts.
Part 1: Reactions of N,N’-bis(pyridine-4-yl)formamidine (4-Hpyf) with HgX2 (X = Cl, Br and I) afforded 2D coordination network {[Hg(4-pyf)2]•(THF)}n, 1, and 1D helical chains {[HgBr2(4-Hpyf)]•(MeCN)}n, 2, and {[HgI2(4-Hpyf)]•(MeCN)}n, 3, which have been structurally characterized by X-ray crystallography. Complex 1 shows 2D layers with the {44•62}-sql topology and complexes 2 and 3 are helical chains that show striking feature in their supramolecular structures. While the helical chains of 2 are linked through N-H---Br hydrogen bonds, those of 3 are linked through self-complementary double N-H---N hydrogen bonds, resulting in 2D supramolecular structures with sql topology for both complexes. The bromide and iodide anions play similar role in determining the crystal structures, while the bromide anion is distinct, suggesting that the structure-determining factors are the size and electronegativity of the halide anion. The emission spectrum of 1 exhibits a board band at 448 nm upon excitation at 381 nm, and those of 2 and 3 show emissions at 432 and 445 nm upon excitation at 344 and 348 nm, respectively. Density function theory (DFT) calculation indicates that the emission of 1 is due to intraligand π → π* charge transfer between two different 4-pyf- ligands, whereas those of 2 and 3 are due to the charge transfer from non-bonding p-type orbitals of the halide anions to π* orbitals of the 4-pyf- ligands (n → π*).
Part 2: Reactions of Mo2(4-pyf)4, 4, with HgX2 (X = Br, I and Cl) afforded [Mo2(4-pyf)4(HgBr2)2•CH3OH]n, 5, [Mo2(4-pyf)4(HgI2)2]n•CH3OH]n, 6, and [Mo2(4-pyf)4(HgCl2)3.6]n, 7, respectively, which are the first 2D and 3D heteronuclear coordination networks based on the quadruple-bonded dimolybdenum units. Complexes 5 and 6 form 2D nets with the sql topology, whereas complex 7 results in a novel 3,6,8-connected trinodal net with point symbol (32•4)2(34•42•63•74•82)(34•69•79•85•9). In a more conservative view, if the disordered Hg atom is not considered, the underlying net becomes the binodal (4,8)-c 4,8T27 with point symbol (32•53•6)(34•44•512•67•7). The Mo/Hg molar ratio in these complexes derived from SEM-EDS matches quite well with those from single crystal X-ray crystallography.
Part 3: One-pot solvothermal reactions of 4-aminopyridine and triethylorthoformate with Cu(O2CCH3)2 in acetone (ACT), dimethylformamide (DMF), tetrahydrofuran (THF), methanol (MeOH) and ethanol (EtOH) afforded 2D coordination networks anti-{[Cu(4-pyf)]•ACT}n, 8a, anti-{[Cu(4-pyf)]•DMF}n, 8b, anti-{[Cu(4-pyf)]•THF]}n, 8c, syn-{[Cu4(4-pyf)4]•2MeOH}n, 9a, and syn-{[Cu4(4-pyf)4]•2EtOH}n, 9b, whereas the reaction of Cu(O2CCH3)2, 4-aminopyridine, triethylorthoformate and CuX2 (X = BF4- and ClO4-) in ethanol gave the 3D coordination networks syn-{[Cu3(4-pyf)2](BF4)•2H2O•EtOH}n, 10a and syn-{[Cu3(4-pyf)2](ClO4)•EtOH}n, 10b, respectively, which were characterized by X-ray crystallography. Complexes 8a – 10b are the first 2D and 3D coordination networks showing closed-shell Cu(I)---Cu(I) interactions that are supported by the formamidinate ligands. Reversible crystal-to-crystal transformations were observed for the 2D anti- and syn-coordination networks upon solvent exchange. Irreversible anti to syn crystal-to-crystal transformations can be shown upon solvent removal and the important intermediate, syn-{[Cu4(4-pyf)4]•2THF}n, 9c, that verifies the temperature-dependent transformation was structurally characterized. The configurations of the structures have significant influences on the emission properties. While the syn-complexes show broad emissions, those of the anti-complexes are not detectable, indicating cuprophilicity is unlikely to play significant roles in determining the emissions of 8a – 10b. The 2D anti- and syn-complexes that show outwardly dangling pyridyl rings may adsorb the Cd salts through Cd---N interactions.
Part 4: Reactions of Au(I) and Ag(I) metal salts with formamidine ligands afforded complexes of the types: [Au4(4-pyf)4]•4(CH3OH) [4-Hpyf = N,N’-bis(pyridine-4-yl)formamidine], 11, [Au4(pmf)4] [Hpmf = N,N’-bis(pyrimidine-2-yl)formamidine], 12, [Ag4(pmf)4], 13, [Ag2(OAc)(4-pyf)]n, 14, and {[Ag2(4-pyf)2]•(THF)}n, 15, which have been structurally characterized by X-ray crystallography. Complexes 11, 12, and 13 are tetranuclear, showing aurophilicity or argentophilicity, whereas 14 forms 2D layer and 15 exhibits a 1D chain. The tetranuclear complexes show bright blue-green luminescences under UV light, which can be ascribed to dσ*/δ* → pπ* transitions. The short lifetimes of 1.06 – 49.15 ns for 11 – 15 indicate that the emissions belong to fluorescence. Most interestingly, complex 14 shows the white luminescent emission in solid-state and the CIE coordinate of (0.30, 0.38) is similar to that of the white light at (0.33, 0.33).
Part 5: The one-pot solvothermal reactions of 2-, 3- and 4-(aminomethyl)pyridine with triethyl orthoformate and Cu(O2CCH3)2 in methanol solutions saturated with nitrogen gas afforded the organic compound 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz), and the first 3D coordination polymers supported by the dinitrogen anions, [Cu2.5(3-mpyf)(N2)1.5]n [3-Hmpyf = N,N’-bis(pyridine-3-ylmethyl)formamidine], 15, and {[Cu3(4-Hmpyf)(N2)3]•(CH3OH)}n [4-Hmpyf = N,N’-bis(pyridine-4- ylmethyl)formamidine], 16, respectively, which were characterized by X-ray crystallography. Both of the complexes show cuprophilicity with Cu(I)---Cu(I) distances of 2.5605(8) and 2.4460(13) Å. The dinitrogen anions of 16 adopt the end-on-dinuclear bonding mode, resulting in a novel 4,4-connected binodal net with the (5373)2(5482) topology, whereas those of 17 displays two types of the bonding modes involving end-on-dinuclear and end-on-trinuclear, resulting in a 3,8-connected binodal net with the (53)4(5864788494)2-3,8T16 topology. Their thermal properties, IR and Raman spectra confirm the formation of the N2- anions.
Contents

摘要 I
Abstract IV
謝誌 VIII
Contents IX
List of Tables XII
List of Figures XIV
List of Schemes XVIII
List of ESI XIX
CHAPTER 1 1
General Introduction 1
CHAPTER 2 8
2.1. Introduction 9
2.2. Experimental Section 10
2.2.1. General Procedures 10
2.2.2. Materials 10
2.2.3. Preparation of 4-Hpyf 10
2.2.4. Preparation of {[Hg(4-pyf)2]•2(THF)}n, 1 11
2.2.5. Preparations of {[HgBr2(4-Hpyf)]•(MeCN)}n, 2, and {[HgI2(4-Hpyf)]•(MeCN)}n, 3 11
2.2.6. X-Ray crystallography 12
2.3. Results and Discussion 14
2.3.1. Structure of 4-Hpyf 14
2.3.2. Structure of 1 18
2.3.3. Structures of 2 and 3 20
2.3.4. Thermal Properties 25
2.3.5. Luminescence Properties 27
2.3.6. Gas Sorption Studies of the desolvated product of 1 30
2.4. Conclusion 32
CHAPTER 3 33
3.1. Introduction 34
3.2. Experimental Details 37
3.2.1. General Procedures 37
3.2.2. Materials 37
3.2.3. Preparation of [Mo2(4-pyf)4], 4 37
3.2.4. Preparations of {[Mo2(4-pyf)4(HgX2)2]•(MeOH)}n, X = Br, 5, and I, 6 38
3.2.5. Preparation of [Mo2(4-pyf)4(HgCl2)3.6]n, 7 38
3.2.6. X-Ray crystallography 39
3.2.7. Computational Details 39
3.3. Results and Discussion 42
3.3.1. Synthesis and Characterization 42
3.3.2. Structure of 4 44
3.3.3. Structures of 5 and 6 45
3.3.4. Structure of 7 48
3.3.5. Absorption and DFT Calculation 52
3.4. Conclusion 56
CHAPTER 4 57
4.1. Introduction 58
4.2. Experimental Section 60
4.2.1. General Procedures 60
4.2.2. Materials 60
4.2.3. Preparations of anti-{[Cu(pyf)]•(ACT)}n, 8a, anti-{[Cu(pyf)]•(DMF)}n, 8b and anti-{[Cu(pyf)]•(THF)}n, 8c 60
4.2.4. Preparations of syn-{[Cu4(pyf)4]•2(MeOH)}n, 9a, syn-{[Cu4(pyf)4]•2(EtOH)}n, 9b 61
4.2.5. Preparations of syn-{[Cu3(4-pyf)2]•(BF4)•2(H2O)•(EtOH)}n, 10a, and syn-{[Cu3(4-pyf)2]•(ClO4)•(EtOH)}n, 10b 62
4.2.6. X-ray Crystallography 62
4.2.7. Adsorption of CdCl2 63
4.2.8. Scanning electron microscopy (SEM) 63
4.3. Results and discussion 68
4.3.1. Syntheses 68
4.3.2. Structures of 8a – 8c 68
4.3.3. Structures of 9a – 9c 71
4.3.4. Structures of 10a and 10b 74
4.3.5. Thermal Properties 77
4.3.6. Crystal-to-Crystal transformation 80
4.3.6.1. Reversible syn ⇌ anti transformations due to solvent exchange 80
4.3.6.2. Irreversible anti to syn structural change due to solvent removal 80
4.3.7. Absorption and emission properties 83
4.3.8. Gas Sorption Studies of the desolvated product of 10a’, 10b’ and 9b’ 89
4.3.9. CdCl2 Adsorption 93
4.4. Conclusion 98
CHAPTER 5 100
5.1. Introduction 101
5.2. Experimental Section 102
5.2.1. General Procedures 102
5.2.2. Materials 102
5.2.3. Preparation of [Au4(4-pyf)4]•4(CH3OH), 11 102
5.2.4. Preparation of [Au4(pmf)4], 12 103
5.2.5. Preparation of [Ag4(pmf)4], 13 104
5.2.6. Preparation of [Ag2(OAc)(4-pyf)]n, 14 104
5.2.7. Preparation of {[Ag2(4-pyf)2]•(THF)}n, 15 105
5.2.8. X-ray Crystallography 105
5.3. Result and Discussion 107
5.3.1. Structures of 11 and 12 107
5.3.2. Structure of 13 109
5.3.3. Structure of 14 110
5.3.4. Structure of 15 112
5.3.5. Luminescence Properties 116
5.4. Conclusion 124
CHAPTER 6 125
6.1. Introduction 126
6.2. Experimental Section 129
6.2.1. General Procedures 129
6.2.2. Materials 129
6.2.3. Preparation of tppz 129
6.2.4. Preparation of [Cu2.5(3-mpyf)(N2)1.5]n, 16 130
6.2.5. Preparation of {[Cu3(4-Hmpyf)(N2)3]•(CH3OH)}n, 17 130
6.2.6. Preparations of 16’ and 17’ 131
6.2.7. Resonance Raman Spectroscopy 131
6.2.8. X-ray Crystallography 131
6.3. Result and Discussion 134
6.3.1. Structure of 16 134
6.3.2. Structure of 17 137
6.3.3. Thermal properties 144
6.3.4. Infrared and resonance Raman spectroscopy 146
6.3.5. Emission properties. 149
6.4. Conclusion 151
Reference 152
Electronic Supplementary Information (ESI) 166

List of Tables

Table 1. Crystallographic Data for (4-Hpyf)6•THF and 1 - 3. 13
Table 2. Selected Bond Lengths (Å) and Angles (deg) for 1, 2 and 3. 21
Table 3. Thermal gravimetric analyses of complexes (4-Hpyf)6•(THF) and 1. 26
Table 4. The energies (eV) in each energy level for complexes 1 – 3. 28
Table 5. Crystallographic Data for 4 – 7. 40
Table 6. Various experiments for complexes 5, 6 and 7. 43
Table 7. Molar rations of Hg to Mo, X to Hg and X to Mo. (X= Br, 5; I, 6 and Cl, 7) 44
Table 8. Selected bond distances for all of the coordination polymers containing dimolybdenum units. 51
Table 9. Crystallographic Data for Compounds 8a - 10b. 64
Table 10. Selected bond lengths (Å) and cavity volume (Å3) 69
Table 11. Selected bond lengths (Å) for 9a - 9c. 72
Table 12. Selected bond lengths (Å) for 10a and 10b. 75
Table 13. Thermal gravimetric analyses of complexes 8a - 9b. 77
Table 14. DSC parameters of complexes 8a - 10b. 78
Table 15. Solid-state Absorption and Luminescence data for Complexes 8a-10b at room temperature. 85
Table 16. The electron contribution for d orbital in Cu of each energy levels of syn- and anti- geometrical complexes (%) 87
Table 17. TDDFT Singlet-Excitation Calculations for [Cu2(4-pyf)2(py)2], py = pyridine 88
Table 18. Adsorption of CdCl2 by 8a (0.32 g, 1 mmol ) 94
Table 19. Adsorption of CdCl2 by 9a (0.28 g, 1 mmol ) 94
Table 20. Crystallographic Data for 11 – 15. 106
Table 21. Average M---M distances (Å) and M---M---M angles (o) of several tetranuclear d10 amidinate cluster. 115
Table 22. Luminescent properties of the tetranuclear gold(I) formamidinate clusters 118
Table 23. Luminescent properties of formamidinate complexes in this work. 119
Table 24. TDDFT RPA Singlet-Excitation Calculations for [Au4(pmf)4], 12. 122
Table 25. General Bonding Modes of N2 in Metal Complexes 128
Table 26. Crystallographic Data for tppz, 16 and 17. 133
Table 27. Selected bond lengths (Å) and angle (o) for 16. 135
Table 28. Selected bond lengths (Å) and angle (o) for 17. 139
Table 29. Summary of natural population analysis for [Cu6(NH3)(μ2-N2)2(μ3-N2)2]2+ 142
Table 30. Thermal properties of 16 and 17. 145
Table 31. Solid-state emission and excitation data for complexes 16, 16’, 17 and 17’. 149

List of Figures

Figure 1. ORTEP drawing of 4-Hpyf, showing 50 % thermal ellipsoids.35 16
Figure 2. ORTEP drawing of (4-Hpyf)6•THF with hydrogen bonded, showing 30 % thermal ellipsoids. 16
Figure 3. The six member rings of hydrogen bonded for 4-Hpyf. 17
Figure 4. 1D supra-molecular structure for 4-Hpyf.35 17
Figure 5. ORTEP drawing of 1 for asymmetrical unit without THF and hydrogen atoms, showing 50 % thermal ellipsoids. 19
Figure 6. Diagram of 1 showing the (44•62)-sql topology, without THF. 19
Figure 7. Packing diagram with THF of 1. 20
Figure 8. ORTEP drawing of 2 for asymmetrical unit, showing 50 % thermal ellipsoids. 22
Figure 9. ORTEP drawing of 3 for asymmetrical unit, showing 50 % thermal ellipsoids. 22
Figure 10. (a) 1D helical chain for 2. (b) 1D helical chain for 3. (c) hydrogen bonded of 2. (d) hydrogen bonded of 3. (e) diagram for 2 showing the (44•62)-sql topology. (f) diagram for 3 showing the (44•62)-sql topology. 25
Figure 11. TGA curves for complexes (a) 4-Hpyf and (b) 1. 26
Figure 12. The emission and excitation spectra for complexes 1 – 3. 28
Figure 13. The DFT calculations showing the electron contribution in each energy level (a) HOMO for 1, (b) LUMO for 1, (c) HOMO for 2 (bottom) and LUMO for 2 (top), (d) HOMO for 3 (bottom) and LUMO 3 (top). 29
Figure 14. Gas sorption isotherms for 1’. (a) N2 at 77 K, H2 at 77 K, CO2 at 273 K, and 298 K. (b) The isosteric heat of adsorption at different CO2 uptake amounts. 31
Figure 15. An ORTEP diagram showing the structure 4. 44
Figure 16.(a) An ORTEP diagram showing the structure for 5 and (b) for 6. (c) A representative structure for complexes 5 and 6. (d) The 2D sql topology 47
Figure 17. (a) An ORTEP diagram showing the structure for 7 and (b) diagram for 7 without hydrogen atoms. (c) view of the coordination of the Mo2 dimer in 4 showing also the pentanuclear Hg chains (the disorder on N,C has been removed for better view). (d) showing bonded distances for pentanuclear Hg5Cl10. (e) stepwise formation for complexes 5 – 7. 50
Figure 18. (a) – (c) show UV-vis spectra for 4-Hpyf and complex 4 in CH2Cl2 and solid-state. (d) solid state UV-vis spectra of 4 – 7.. 54
Figure 19. The electronic contribution of (a) HOMO, (b) LUMO for complex 4. 55
Figure 20. (a) A representative drawing showing the coordination environment about the Cu(I) centers of 8a - 8c. Symmetry transformations used to generate equivalent atoms: (A) –x + 1,-y + 1, -z + 1; (B) –x + 1, y + 1/2, -z + 3/2; (C) –x + 1, y - 1/2, -z + 3/2 for 8a and 8c. (A) –x + 1, -y, -z; (B) x, -y + 1/2, z-1/2; (C) x, -y + 1/2, z + 1/2 for 8b. (b) A representative drawing showing the 2D layer of 8a – 8c. (c) A simplified 2D net showing the sql topology and the dangling pyridyl nitrogen atoms that pointing up and down. (d) A drawing showing the supramolecular structure of 8a – 8c that is supported by the π-π stacking interactions. (e) A simplified schematic drawing showing the 3D supramolecular structure with cavities occupied by the solvents. 71
Figure 21. (a) A representative drawing showing the coordination environment about the Cu(I) centers of 9a and 9b. Symmetry transformations used to generate equivalent atoms: (A) –x + 1, y, -z + 3/2; (B) x + 1/2, y - 1/2, z; (C) -x + 1/2, y + 1/2, -z + 3/2; (D) –x + 1/2, y - 1/2, -z + 3/2; (E) x - 1/2, y + 1/2, z. (B) A representative drawing showing the 2D layer of 9a and 9b. (c) A simplified 2D net with the sql topology. (d) A schematic drawing showing the orientations of the dangling pyridyl nitrogen atoms. 73
Figure 22. The drawings defining the (a) anti and (b) syn configurations. 74
Figure 23. (a) A representative drawing showing the coordination environment about the Cu(I) centers of 10a and 10b. Symmetry transformations used to generate equivalent atoms: (A) x + 1, y, z; (B) –x + 1, y - 1/2, -z + 3/2; (C) x, -y + 1/2, z + 1/2. (b) A representative drawing showing the 2D template of 10a and 10b, view the c-axial. The light blue showed the Cu(3) atoms (c) A simplified 3D structure with the pcu topology, view the b-axial. 76
Figure 24. TGA curves for complexes 8a - 9b. 78
Figure 25. (a) DSC curves of the 8a - 9b. (b) DSC curves of the 10a and 10b. 79
Figure 26. The PXRD patterns for the desolvated complexes of (a) 8a, (b) 8b, (c) 8c, (d) 9a, (e) 9b, (f) 9d (deep blue line) and 9e (orange line) at 240 oC. Selected range 5o~30o for 2θ. 82
Figure 27. The PXRD patterns of complex 8c at (a) simulation for 8c, (b) 30 oC, (c) 50 oC, (d) 60 oC, (e) 80 oC, (f) 85 oC, (g) 100 oC, (h) 140 oC, (i) 160 oC, (j) simulation for 9c, (k) mixed simulation for 9d and 9e. 83
Figure 28. UV-vis spectra for absorption of complexes 8a - 10b in the solid-state at room temperature. 85
Figure 29. Emission and excitation spectra (a) complexes 9a, 9b, 10a and 10b in the solid state at room temperature. (b) desolvated for 8a – 9b at 240 oC. 86
Figure 30. (a) images for 8a - 10b at RT. (b) emission of images for 8a - 10b at 365 nm. 87
Figure 31. The energy gap for syn- (left) and anti-geometrical (right) complexes as well as the electron contributions of HOMO-1, HOMO, LUMO, LUMO+1 and LUMO+2.. 89
Figure 32. Gas sorption isotherms for 10a’, 10b’ and 9b’. (a) N2 at 77 K, (b) H2 at 77 K, (c) CO2 at 273 K, (d) CO2 at 298 K, (e) The isosteric heat of adsorption at different CO2 uptake amounts. 93
Figure 33. Adsorption isotherms for CdCl2. 95
Figure 34. The 113Cd solid-state NMR spectra. (a) CdCl2 metal salts, (b) CdCl2 with 8a, (c) CdCl2 with 9a. 95
Figure 35. SEM images for crystal of 9b. (a) Scale bar is 10 μm, (b) 1 μm, (c) 10 μm. 96
Figure 36. Show the round defects of SEM images for crystal 9b after heated at 180 oC. (a) scale bar is 10 μm, (b) 100 nm, (c) 100 nm, (d) 10 μm. 97
Figure 37. SEM images for crystal 9b after heated at 180 oC, showed the cubic defects, (a) scal bar is 10 μm, (b) 1 μm. 98
Figure 38. An ORTEP diagram showing the structure 11. 108
Figure 39. An ORTEP diagram showing the structure 12. 108
Figure 40. An ORTEP diagram showing the structure 13. 110
Figure 41. (a) An diagram showing the structure 14, A = x + 1/2, y – 1/2, z; B = x – 1/2, y – 1/2, z. (b) The packing diagram for structure 14. (c) 2D sql topology. (d) SP 2-periodic net (4,4)Ia; SnS, {48•62} topology. 112
Figure 42. (a) An ORTEP diagram showing the structure 15. (b) The packing diagram for 15. (c) The packing diagram for 15 with N(5B)---Ag(2) interaction. (d) The diagram for 15 showing the 2D supramolecular structure. (e) The diagram showing 2D sql topology. 114
Figure 43. The absorption spectra showing complexes 4-Hpyf, Hpmf, 11 – 13. 120
Figure 44. The emission and excitation spectra of 11, 12 and 13 in MeOH. 120
Figure 45. The emission and excitation spectra of 11 - 15 in solid-state. 121
Figure 46. The CIE coordinates of complex 14. 121
Figure 47. The electron contribution of HOMO (left) and LUMO (right) in 11, 12 and 13. 122
Figure 48. The electron contribution of HOMO (left) and LUMO (right) in (a) for 14 and (b) for 15. 123
Figure 49. (a) An ORTEP diagram showing the structure 16. (b) The 4-connected nodes showing in Cu(1)---Cu(1A). (c) 3D (5373)2(5482), 4,4-c net new topology. (d) The packing diagram showing -Cu-N2- 1D linear chain. 137
Figure 50. (a) An ORTEP diagram showing the structure 17. (b) An ORTEP diagram showing the coordination environment with Cu(I) ions and nitrogen atoms. (c) The 8-connected nodes showing in Cu(1)---Cu(1A). (d) 3D (53)4(5864788494)2, 3,8T16 topology. 141
Figure 51. TGA curves for 16 and 17. 145
Figure 52. Infrared spectroscopy for (a) 16 and (b) 17 containing 14N2 and 15N2. 147
Figure 53. Raman spectroscopy for (a) 16 and (b) 17 containing 14N2 and 15N2. 148
Figure 54. Photoluminescence for (a) 16 and (b) 17 containing 14N2 and 15N2. 150

List of Schemes

Scheme 1. Structures of (a) amidates, (b) formamidinates, and (c) amidinates. 2
Scheme 2. Structures of formamidine and formamidinate ligands. R and R’ are functional groups. 2
Scheme 3. The bonding modes for the DpyF- ligand. 2
Scheme 4. The bonding modes for the pmf- ligand. 4
Scheme 5. N-phenyl-N’-cyano-formamidine (HphCNF) 5
Scheme 6. (a) 4-Hpyf, (b) Hpmf, (c) 3-Hmpyf and (d) 4-Hmpyf. 6
Scheme 7. All reactions discussed in this thesis. 7
Scheme 8. The proposed of the formation of 4-Hpyf.. 15
Scheme 9. (a) and (b) Representative structures for coordination polymers containing multiple-bonded paddlewheel motif. (c) and (d) Schematic drawings for the complexes 5 – 7. 36
Scheme 10.(a) Reversible and irreversible SCSC transformations among syn and anti complexes. (b) SCSC transformations between 8c and 9c. 82
Scheme 11. The dinitrogen atom donates a lone pair of electrons to the metal atom. (a) σ donor to d orbitals, (b) Receives π electrons in return from metal d orbitals into its π antibonding orbitals. 127
Scheme 12. (a) The NBO calculations through the structure of [Cu6(NH3)(μ2-N2)2(μ3-N2)2]2+. (b) A schematic drawing showing the bonding orbitals of [Cu6(μ2-N2)2(μ3-N2)2]2+. 143

List of ESI

Figure S1. The NMR spectra for 4-Hpyf. 166
Figure S2. The NMR spectra for Hpmf 166
Figure S3. The PXRD patterns for complex 1. 167
Figure S4. The PXRD patterns for complex 2. 167
Figure S5. The PXRD patterns for complex 3. 168
Figure S6. The NMR spectra for complex 4. 168
Figure S7. (a) The PXRD patterns for complex 5. (b) The SEM image and EDS spectrum for complex 5. 169
Figure S8. (a) The PXRD patterns for complex 6. (b) The SEM image and EDS spectrum for complex 6. 170
Figure S9. (a) The PXRD patterns for complex 7. (b) The PXRD patterns for complex 7, reacted in MeOH. (c) The SEM images and EDS spectra of complex 7, which were obtained from three different experiments. 173
Figure S11. The PXRD patterns for complex 8b. 174
Figure S12. The PXRD patterns for complex 8c. 175
Figure S13. The PXRD patterns for complex 9a. 175
Figure S14. The PXRD patterns for complex 9b. 176
Figure S15. The PXRD patterns for complex 10a. 176
Figure S16. The PXRD patterns for complex 10b. 177
Figure S17. The simulated and SCSC transformation PXRD patterns for 8a to 9a. 177
Figure S19. The simulated and SCSC transformation PXRD patterns for 8b to 9a. 178
Figure S21. The simulated and SCSC transformation PXRD patterns for 8c to 9a. 179
Figure S23. The simulated and SCSC transformation PXRD patterns for 9a to 8a. 180
Figure S24. The simulated and SCSC transformation PXRD patterns for 9a to 8b. 181
Figure S25. The simulated and SCSC transformation PXRD patterns for 9a to 8c. 181
Figure S26. The simulated and SCSC transformation PXRD patterns for 9b to 8a. 182
Figure S27. The simulated and SCSC transformation PXRD patterns for 9b to 8b. 182
Figure S28. The simulated and SCSC transformation PXRD patterns for 9b to 8c. 183
Figure S29. The SCSC transformation PXRD patterns for 8a heated at 160 oC. 183
Figure S30. The SCSC transformation PXRD patterns for 8b heated at 160 oC. 184
Figure. S32. The PXRD patterns for complexes 9d, 9e and 9b at 160 oC. Selected range 5o~20o for 2θ. 185
Figure. S33. The PXRD patterns for the desolvated complexes of (a) 8a, (b) 8b, (c) 8c, (d) 9a, (e) 9b, (f) 9d (deep blue line) and 9e (orange line) at 240 oC. Selected range 5o~30o for 2θ. 185
Figure S34. The simulated and temperature-dependent PXRD patterns for 9b at 110 oC to 240 oC. 186
Figure S35. The SEM images and EDS spectra of the complexes obtained by adding (a) 0.50 mmol, (b) 1.00 mmol, (c) 1.50 mmol and (d) 2.00 mmol of CdCl2 to 1 mmol of 8a in 20 mL ACT. 188
Figure S36. The SEM images and EDS spectra of the complexes obtained by adding (a) 0.50 mmol, (b) 1.00 mmol, (c) 1.50 mmol and (d) 2.00 mmol of CdCl2 to 1 mmol of 9a in 20 mL MeOH. 190
Figure S37. The NMR spectra for complex 11. 191
Figure S38. The NMR spectra for complex 12. 191
Figure S39. The NMR spectra for complex 13. 192
Figure S40. The PXRD patterns for complex 14. 192
Figure S41. The PXRD patterns for complex 15. 193
Figure S42. An ORTEP diagram showing the structure tppz. 193
Figure S43. The PXRD patterns for complex 16. 194
Figure S45. The PXRD patterns for complex 16 after heat at 200 oC. 195
Figure S46. The PXRD patterns for complex 17 after heat at 200 oC. 195
(1)Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974–986.
(2)(a) O’Keeffe, M.; Yaghi, O. M. Chem. Rev. 2012, 112, 675–702. (b) Kitagawa, S; Noro, S.; Nakamura, T. Chem. Comm. 2006, 701–707. (c) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed., 2004, 43, 2334–2375. (d) Li, J. –R.; Sculley, J.; Zhou, H. –C. Chem. Rev., 2012, 112, 869–932.
(3)(a) Sadakiyo, M.; Yamada, T.; Honda, K.; Matsui, H.; Kitagawa, H. J. Am. Chem. Soc. 2014, 136, 7701−7707. (b) Sadakiyo, M.; Yamada, T.; Honda, K.; Matsui, H.; Kitagawa, H. J. Am. Chem. Soc. 2014, 136, 7701−7707. (c) Pardo, E.; Train, C.; Gontard, G.; Boubekeur, K.; Fabelo, O.; Liu, H.; Dkhil, B.; Lloret, F.; Nakagawa, K.; Tokoro, H.; Ohkoshi, S.; Verdaguer, M. J. Am. Chem. Soc. 2011, 133, 15328−15331. (d) Ohkoshi, S.; Nakagawa, K.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. J. Am. Chem. Soc. 2010, 132, 6620−6621.
(4)Barker, J.; Kilner, M. Coord. Chem. Rev. 1994, 133, 219–300.
(5)(a) Cotton, F. A.; Murillo, C. A.; Zhou, H. –C. Inorg. Chem. 2000, 39, 3261–3264. (b) Lin, C.; Protasiewicz, J. D.; Smith, E. T.; Ren, T. Inorg. Chem. 1996, 35, 6422–6428. (c) Lichtenberger, D. L.; Lynn, M. A.; Chisholm, M. H. J. Am. Chem. Soc. 1999, 121, 12167–12176.
(6)(a) Weng, H. –Y.; Lee, C. –W.; Chuang, Y. –Y.; Suen, M. –C.; Chen, J. –D.; Hung, C. –H. Inorg. Chim. Acta 2003, 351, 89–96. (b) Wu, Y. –Y.; Kao, Y. –C.; Chen, J. –D.; Hung, C. –H. Inorg. Chim. Acta 2004, 357, 1002–1010. (c) Bursten, B. E.; Chisholm, M. H.; Hadad, C. M.; Li, J.; Wilson, P. J. Chem. Commun. 2001, 2382–2383. (d) Chisholm, M. H.; Macintosh, A. M. Chem. Rev. 2005, 105, 2949–2976.
(7)(a) Pyykkö, P.; Mendizabal, F. Inorg. Chem. 1998, 37, 3018–3025. (b) Clerac, R.; Cotton, F. A.; Dunbar, R. A.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40, 420–426. (c) Cotton, F. A.; Lin, C.; Murillo, C. A. Inorg. Chem. 2000, 39, 4574–4578. (d) Cotton, F. A.; Daniels, L. M.; Murillo, C. A. ; Schooler, P. J. Chem. Soc., Dalton Trans. 2000, 13, 2007–2012. (e) Cotton, F. A.; Daniels, L. M.; Murillo, C. A. J. Chem. Soc., Dalton Trans. 2000, 13, 2001–2005. (f) Cotton, F. A.; Daniels, L. M.; Matonic, J. H.; Murillo, C. A. Inorg. Chim. Acta. 1997, 256, 277–282. (g) Murray, H. H.; Briggs, D. A.; Garzon, G.; Raptis, R. G.; Porter, L. C.; Fackler, J. P. Oraganometallics 1987, 6, 1992–1995.
(8)(a) Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349–384. (b) Lin, W. –B.; Liang, H. –C.; Chen, J. –D.; Keng, T. –C.; Wang, J. –C. Inorg. Chim. Acta 2002, 336, 157–162. (c) Tsukada, N.; Tamura, O.; Inoue, Y. Organometallics 2002, 21, 2521–2528. (d) Radak, S.; Ni, Y.; Xu, G.; Shaffer, K. L.; Ren, T. Inorg. Chim. Acta 2002, 21, 2521–2528.
(9)Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, 3rd ed.; Springer Science and Business Media, Inc.: New York, 2005.
(10)(a) Cotton, F. A.; Murillo, C. A.; Wang, X. Chem. Commun. 1998, 39–40. (b) Cotton, F. A.; Murillo, C. A.; Wang, X. Inorg. Chem. Commun. 1998, 1, 281–283. (c) Casas, J. M.; Diosdado, B. E.; Falvello, L. R.; Fornies, J.; Martin, A. Inorg. Chem. 2005, 44, 9444–9452.
(11)(a) Cotton, F. A.; Feng, X.; Matusz, M.; Poli, R. J. Am. Chem. Soc. 1988, 110, 7077–7083. (b) Cotton, F. A.; Feng, X.; Timmons, D. J. Inorg. Chem. 1998, 37, 4066–4069.
(12)Chan, Z. –K.; Chen, T. –R.; Chen, J. –D.; Wang, J. –C.; Liu, C. W. Dalton Trans. 2007, 3450–2458.
(13)Chan, Z. –K.; Wu, Y. –Y. Chen, J. –D.; Yeh, C. –Y.; Wang, C. –C.; Tsai, Y. –F.; Wang, J. –C. Dalton Trans. 2005, 985–990.
(14)Chan, Z. –K.; Lin, C. –H.; Wang, C. –C.; Chen, J. –D.; Wang, J. –C.; Liu, C. W. Dalton Trans. 2008, 2183–2189.
(15)Mohamed, A. A.; Abdou, H. E.; Irwin, M. D.; Lopez-de-Luzuriaga, J. M.; Fackler, J. P. J. Cluster Sci. 2003, 14, 253–266.
(16)Cotton, F. A.; Murillo, C. A.; Wang, X. Inorg Chem. Commun. 1998, 1, 281–283.
(17)Abdou, H. E.; Mohamed, A. A.; Fackler, J. P., Jr. Inorg. Chem. 2005, 44, 166–168.
(18)Chiang, L. –M.; Yeh, C. –W.; Chan, Z. –K.; Wang, K. –M.; Chou, Y. –C.; Chen, J. –D.; Wang, J. –C.; Lai, J. –Y. Cryst. Growth Des. 2008, 8, 470–477.
(19)(a) Abdou, H. E.; Mohamed, A. A.; López-de-Luzuriaga, J. M.; Monge, M.; Fackler, J. P., Jr. Inorg. Chem. 2012, 51, 2010–2015. (b) Abdou, H. E.; Mohamed, A. A.; López-de-Luzuriaga, J. M.; Fackler, J. P., Jr. J. Cluster Sci. 2004, 15, 397–411.
(20)(a) Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem.Eur. J. 1997, 3, 1451–1457. (b) Pyykkö, P. Chem. Rev. 1997, 97, 597–636. (c) Pyykkö, P. Chem. Rev. 1988, 88, 563–594.
(21)(a) Forward, M. J.; Fackler, J. P., Jr.; Assefa, Z. Optoelectronic Properties of Inorganic Compounds New York 1999, 195–226. (b) Forward, J. M.; Assefa, Z.; Fackler, J. P., Jr. J. Am. Chem. Soc. 1995, 117, 9103–9104. (c) King, C.; Wang, J. C.; Khan, M. N. I.; Fackler, J. P., Jr. Inorg. Chem. 1989, 28, 2145–2149. (d) Vogler, A.; Kunkely, H. Chem. Phys. Lett. 1988, 150, 135–137. (e) Yam, V. W. –W.; Chan, C. –L.; Li, C. –K.; Wong, K. M. –C. Coord. Chem. Rev. 2001, 173–194.
(22)(a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589–625. (b) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696–1700. (c) Lee, S. C.; Holm, R. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3595–3600.
(23)Mackay, B.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385–401.
(24)Lin, Y. –Y.; Lai, S. –W.; Che, C. –M.; Fu, W. –F.; Zhou, Z. –Y.; Zhu, N. Inorg. Chem. 2005, 44, 1511–1524.
(25)(a) Zhang, J.-P.; Huang, X.-C.; Chen, X.-M. Chem. Soc. Rev. 2009. 38. 2385–2396. (b) Li, C.-P.; Wu, J.-M.; Du, M. Inorg. Chem. 2011, 50, 9284–9289.
(26)Rark, T. H.; Hickman, A. J.; Koh, K.; Martin, S.; Wong-Foy, A. G.; Sanford, M. S.; Matzger, A. J., J. Am. Chem. Soc., 2011, 133, 20138–20141.
(27)(a) Sijbesma, R. P.; Meijer, E. W. Curr. Opin. Colloid Interface Sci. 1999, 4, 24–32. (b) Zimmerman, S. C.; Corbin, P. S. Struct. Bonding (Berlin) 2000, 96, 63–94. (c) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001, 30, 83–93. (d) Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95, 2229–2260.
(28)(a) Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688–764. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.;Blatov, V. A. Chem. Rev. 2014, 114, 7557–7580.
(29)Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry: Cambridge, U.K., 2009.
(30)Chan, Z. –K.; Wu, Y. –Y. Chen, J. –D.; Yeh, C. –Y.; Wang, C. –C.; Tsai, Y. –F.; Wang, J. –C. Dalton Trans. 2005, 985–990.
(31)SMART for Windows NT, version 5.618; Bruker Advanced X-ray Solutions, Inc: Madison, WI, 2001.
(32)SAINT, Data Reduction Software, version 6.36A; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2001.
(33)SADABS, Area Detector Absorption and other Corrections Software, version 2.05; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2001.
(34)Sheldrick, G. M., SHELXTL, version 6.12; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2002.
(35)Petitjean, A.; Xing, L.; Wang, R. CrystEngComm 2010, 12, 1397–1400.
(36)Hyde, S. T.; O'Keeffe, M.; Proserpio, D. M., Angew. Chem. Int. Ed. 2008, 47, 7996–8000. (b) Alexandrov, E. V.; Blatov, V. A.; Proserpio, D. M., Acta Cryatallogr., Sect. A 2012, 68, 484–493. (c) Blatov, V. A., IUCr CompComm. Newsletter 2006, 7, 4–38, see also http://www.topos.ssu.samara.ru.
(37)(a) Rauk, A.; Armstrong, D. A. J. Phys. Chem. A 2000, 104, 7651–7658. (b) Smart, P.; Bejarano-Villafuerte, Á.; Hendry, R. M.; Brammer, L. CrystEngComm 2013, 15, 3160–3167.
(38)(a) Hu, R. F.; Zhang, J.; Kang, Y.; Yao, Y. G. Inorg. Chem. Commun. 2005, 8, 828–830. (b)Dutta, B.; Bag, P.; Flörke, U.; Nag, K. Inorg. Chem. 2005, 44, 147–157.
(39)Riley, K.E.; Merz, K. M., Jr. J. Phys. Chem. A 2007, 111, 6044–6053.
(40)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E., Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Gaussian 09, Revision B.01, Wallingford CT, 2010.
(41)(a) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keefe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176–182. (b) Kitagawa, S.; Matsuda R. Coord. Chem. Rev. 2007, 251, 2490–2509.
(42)(a) Li, H. –H.; Chen, Z. –R.; Li, J. –Q.; Huang, C. –C.; Zhang, Y. –F.; Jia, G. –X. Cryst. Growth Des. 2006, 6, 1813–1820. (b)Wang, Y. –H.;Chu, K. –L.; Chen, H. –C.; Yeh, C. –W.; Chan, Z. –K.; Suen, M. –C.; Chen, J. –D.; Wang, J. –C. CrystEngComm 2006, 8, 84–93. (c) Bu, X. –H.; Chen, W.; Hou, W. –F.; Du, M.; Zhang, R. –H.; Brisse, F. Inorg. Chem. 2002, 41, 3477–3482. (d) Blake, A. J.; Champness, N. R.; Cooke, P. A.; Nicolson, J. E. B.; Wilson, C. J. Chem. Soc., Dalton Trans. 2000, 3811–3819.
(43)(a) Béziau, A.; Baudron, S. A.; Pogozhev, D.; Fluck, A.; Hosseini, M. W. Chem. Commun. 2012, 48, 10313–10315. (b) Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313–323.
(44) Köberl, M.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. Daton Trans. 2011, 40, 6834–6859.
(45)(a) Kerby, M. C.; Eichhorm, B. W.; Creighton, J. A.; Vollhardt, K. P. C. Inorg. Chem. 1990, 19, 1319–1323. (b) Handa, M.; Kasamatsu, K.; Kasuga, K.; Mikuriya, M.; Fujii, T. Chem. Lett. 1990, 9, 1753–1756. (c) Handa, M.; Mikuriya, M.; Kotera, T.; Yamada, K.; Nakao, T.; Matsumoto, H.; Kasuga, K. Bull. Chem. Soc. Jpn. 1995, 68, 2567–2572.
(46)(a) Handa, M.; Sono, H.; Kasamatsu, K.; Kasuga, K.; Mikuriya, M.; Ikenoue, S. Chem. Lett. 1992, 21, 453–456. (b) Handa, M.; Matsumoto, H.; Namura, T.; Nagaoka, T.; Kasuga, K.; Mikuriya, M.; Kotera, T.; Nukada, R. Chem. Lett. 1995, 24, 903–904. (c) Handa, M.; Yamada, K.; Nakao, T.; Kasuga, K.; Mikuriya, M.; Kotera, T. Chem. Lett. 1993, 22, 1969–1972.
(47)Chisholm, M. H.; Dann, A. S.; Dielmann, F.; Gallucci, J. C.; Patmore, N. J.; Ramnauth, R.; Scheer, M. Inorg. Chem. 2008, 47, 9248–9255.
(48)Kuang, S.-M.; Fanwick, P. E.; Walton, R. A. Inorg. Chem. Commun. 2002, 5, 134–138.
(49)(a) Kramer, M.; Schwarz, U.; Kaskel, S. J. Mater. Chem. 2006, 16, 2245–2248. (b) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Prpen, A. G.; Williams, I. D. Science 1999, 283, 1148–1150. (c) Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 7856–7857.
(50)Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310.
(51)Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2001.
(52)Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. CrystEngComm 2011, 13, 3947–3958.
(53)Li, B.; Zhou, X.; Zhou, Q.; Li, G.; Hua, J.; Bi, Y.; Li, Y.; Shi, Z.; Feng, S. CrystEngComm 2011, 13, 4592–4598.
(54)Cotton, F. A.; Mester, Z. C.;Webb, T. R. Acta. Crystallogr., Sect. B 1974, 30, 2768–2770.
(55)Cotton, F. A.; Norman, J. G. Jr. J. Coord. Chem. 1971, 1, 161–171.
(56)(a) Santure, D. J.; Huffman, J. C.; Sattelberger, A. P. Inorg. Chem. 1985, 24, 371–378. (b) Filippo, J. S.; Sniadoch, H. J. Inorg. Chem. 1976, 15, 2209–2214. (c) Chisholm, M. H.; Glasgow, K. C.; Klein, L. J.; Macintosh, A. M.; Peter, D. G. Inorg. Chem. 2000, 39, 4354–4357. (d) Cotton, F. A.; Donahue, J. P.; Murillo, C. A.; Perez, L. M.; Yu, R. M. J. Am. Chem. Soc. 2003, 125, 8900–8910. (e) Cotton, F. A. Cotton; Donahue, J. P.; Murillo, C. A.; Perez, L. M. J. Am. Chem. Soc. 2003, 125, 5486–5492.
(57)(a) Cotton, F. A.; Liu, C. –Y.; Murillo, C. A.; Wang, W. Inorg. Chem. 2003, 42, 4619–4623. (b) Lin, C.; Potasiewicz, J. D.; Smith, E. T.; Ren, T. Inorg. Chem. 1996, 35, 6422–6428. (c) Acho, J. A.; Ren, T.; Yun, J. W.; Lippard, S. L. Inorg. Chem. 1995, 34, 5226–5233. (d) Cotton, F. A.; Feng, X.; Matusz, M. Inorg. Chem. 1989, 28, 594–601. (e) Cotton, F. A.; Ren, T. J. Am. Chem. Soc. 1992, 114, 2237–2242.
(58)(a) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781–1795. (b) Chen, C. L.; Beatty, A. M. J. Am. Chem. Soc. 2008, 130, 17222–17223. (c) Sadeghzadeh, H.; Morsali, A. Inorg. Chem. 2009, 48, 10871–10873. (d) Duan, Z.; Zhang, Y.; Zhang, B.; Zhu, D. J. Am. Chem. Soc. 2009, 131, 6934–6935. (e) Aslani, A.; Morsali, A.; Zeller, M. Dalton Trans. 2008, 5173–5177. (f) Mahmoudi, G.; Morsali, A. Z. Anorg. Allg. Chem. 2009, 635, 2697–2700. (g) Uemura, K.; Saito, K.; Kitagawa, S.; Kita, H. J. Am. Chem. Soc. 2006, 128, 16122–16130. (h) Nather, C.; Bhosekar, G.; Jess, I. Inorg. Chem. 2007, 46, 8079–8087. (i) Zhang, B.; Zhu, D.; Zhang, Y. Chem. Eur. J. 2010, 16, 9994–9997. (j) Zhang, Y. –J.; Liu, T.; Kanegawa, S.; Sato, O. J. Am. Chem. Soc. 2010, 132, 912–913. (k) Zhang, Y. –J.; Liu, T.; Kanegawa, S.; Sato, O. J. Am. Chem. Soc. 2009, 131, 7942–7943. (l) Cheng, X. –N.; Zhang, W. –X.; Chen, X. –M. J. Am. Chem. Soc. 2007, 129, 15738–15739.
(59)Hsu, W.; Li, Y. –S.; He, H. –Y.; Chen, K. –T.; Wu, H. –S.; Proserpio, D. M.; Chen, J. –D.; Wang, J. –C. CrystEngComm 2014, 16, 7385–7388.
(60)(a) Albada, G. A. V.; Koningsbruggen, P. J. V.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. Eur. J. Inorg. Chem. 1999, 2269–2275. (b) Albada, G. A. V.; Mutikainen, I.; Urho, T.; Reedijk, J. Eur. J. Inorg. Chem. 1998, 547–549.
(61)Bruker AXS, APEX2, V2008.6; SAD ABS V2008/1; SAINT+ V7.60A; SHELXTL V6.14; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
(62)Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.
(63)(a) Kalita, A.; Kumar, P.; Deka, R. C.; Mondal, B. Inorg. Chem. 2011, 50, 11868–11876. (b) Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401–10402. (c) Lu, J. Y.; Babb, A. M. Inorg. Chem. 2002, 41, 1339–1341. (d) Lo, S. M–F.; Chui, S. S–Y.; Shek, L. –Y.; Lin, Z. –Y.; Zhang, X. –X.; Wen, G. –H.; Williams, I. D. J. Am. Chem. Soc. 2000, 122, 6293–6294. (e) Jin, K.; Huang, X.-Y.; Pang, L.; Li, J.; Appel, A.; Wherland, S. Chem. Commun. 2002, 2872–2873.
(64)Nattinen, K. I.; Rissanen, K. Cryst. Growth Des. 2003, 3, 339–353.
(65)(a) Yam, V. W. –W.; Wong, K. M–C. Chem. Commum. 2011, 47, 11579–11592. (b) Che, C. –M.; Mao, Z.; Miskowski, V. M.; Tse, M. –C.; Chan, C. –K.; Cheung, K. –K.; Phillips, D. L.; Leung, K. –H. Angew. Chem. Int. Ed. 2000, 39, 4084–4088.
(66)(a) McCormick, T.; Jia, W. –L.; Wang, S. Inorg. Chem. 2006, 45, 147–155. (b) Che, C. –M.; Lai, S. –W. Coord. Chem. Rev. 2005, 249, 1296–1309.
(67)(a) Hohenberg, P.; Kohn, W., Phys. Rev., 1964, 136, B864–B871. (b) Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.
(68)(a) Becke, A. D., J. Chem. Phys. 1993, 98, 5648–5652. (b) Becke, A. D., Phy. Rev. A: At. Mol. Opt. Phys. 1998, 38, 3098–3100. (c) Lee, C.; Yang, W.; Parr, R. G., Phy. Rev. B: Condens. Matter Mater. Phys. 1998, 37, 785–789.
(69)(a) Maji, T. K.; Ohba, M.; Kitagawa, S. Inorg. Chem. 2005, 44, 9225–9231. (b) Kanoo, P.; Mostafa, G.; Matsuda, R.; Kitagawa, S.; Maji, T. K. Chem. Commun. 2011, 47, 8106–8108. (c) Wang, X. –F.; Zhang, Y. –B.; Xue, W. Cryst. Growth Des. 2012, 12, 1626–1631. (d) Kanoo, P.; Matsuda, R.; Kitaura, R.; Kitagawa, S.; Maji, T. K. Inorg. Chem. 2012, 51, 9141–9143. (e) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Pure &; Appl. Chem. 1985, 57, 603–619.
(70)(a) Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. J. Am. Chem. Soc. 2005, 127, 13519−13521. (b) Wu, H.; Reali, R. S.; Smith, D. A.; Trachtenberg, M. C.; Li, J. Chem. Eur. J. 2010, 16, 13951−13954. (c) Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. –C. Angew. Chem., Int. Ed. 2010, 49, 5357− 5361. (d) Wang, Q. M.; Shen, D.; Bülow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, L. Microporous Mesoporous Mater. 2002, 55, 217−230. (e) Dunne, J. A.; Rao, M.; Sircar, S.; Gorte, R. J.; Myers, A. L. Langmuir 1996, 12, 5896−5904. (f) Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. J. Am. Chem. Soc. 2005, 127, 13519−13521. (g) Wu, H.; Reali, R. S.; Smith, D. A.; Trachtenberg, M. C.; Li, J. Chem. Eur. J. 2010, 16, 13951−13954. (h) Yuan, D.; Zhao, D.; Sun, D.; Zhou, H. –C. Angew. Chem., Int. Ed. 2010, 49, 5357− 5361. (i) Zhuang, W. J.; Yuan, D. Q.; Liu, D. H.; Zhong, C. L.; Li, J. R.; Zhou, H. C. Chem. Mater. 2012, 24, 18–25. (j) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304−1315. (k) Ma, S. Q.; Eckert, J.; Forster, P. M.; Yoon, J. W.; Hwang, Y. K.; Chang, J. S.; Collier, C. D.; Parise, J. B.; Zhou, H. C. J. Am. Chem. Soc. 2008, 130, 15896−15902.
(71)(a) Summers, M. F. Coord. Chem. Rev. 1988, 86, 43–134. (b) March, R.; Pons, J.; Ros, J.; Clegg, W.; Álvarez-Larena, A.; Piniella, J. F.; Sanz, J. Inorg. Chem. 2003, 42, 7403–7409. (c) Wazeer, M. I. M.; Isab, A. A. Spectrochim. Acta, A. 2005, 62, 880–885. (d) Sakida, S.; Shojiya, M.; Kawamoto, Y. Solid State Commun. 2000, 115, 553–588.
(72)Yam, V. W. –W.; Cheng, E. C. –C. Chem. Soc. Rev. 2008, 37, 1806–1813.
(73)(a) Crespo, O.; Fernández, E. J.; Gil, M.; Gimeno, M. C.; Jones, P. G.; Laguna, A.; López-de-Luzuriaga, J. M.; Olmos, M. E. J. Chem. Soc., Dalton Trans. 2002, 1319–1326. (b) Li, X.; Gong, Y.; Zhao, H.; Wang, R. Inorg. Chem. 2014, 53, 12127–12134.
(74)(a) Scherer, O. J.; Hornig, P. Chem. Ber. 1968, 101, 2533–2547. (b) Westerhausen, M.; Hausen, H. –D. Z. Anorg. Allg. Chem. 1992, 615, 27–34. (c) Boeré, R. T.; Oakley, R. T.; Reed, R. W. J. Organomet. Chem. 1987, 331, 161–167. (d) Wedler, M.; Knösel, F.; Noltemeyer, M.; Edelmann, F. T.; Behrens, U. J. Organomet. Chem. 1990, 388, 21–45.
(75)(a) Uson, R.; Laguna, A.; Laguna, M.; Jones, P. G.; Sheldrick, G. M. Chem. Commun. 1981, 1097–1098. (b) Laguna, A.; Lasanta, T.; López-de-Luzuriaga, J. M.; Monge, M.; Naumov, P.; Olmos, M. E. J. Am. Chem. Soc. 2010, 132, 456–457.
(76)Fernandez, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Puelles, R. C.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., Jr. Inorg. Chem. 2008, 47, 8069–8076.
(77)(a) Beck, J.; Strahle, J. Angew. Chem. Int. Ed. Engl. 1986, 25, 95–96. (b) Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P. F. Inorg. Chem. 1985, 24, 366–371. (c) Yang, G.; Raptis, R. G. Inorg. Chem. Acta 2003, 352, 98–104.
(78)(a) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232–1268. (b) Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Chem. Soc. Rev. 2011, 40, 696–753. (c) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.
(79)(a) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257–1283. (b) O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782–1789. (c) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705–714. (d) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469–472.
(80)(a) MacLachlan, E. A.; Fryzuk, M. D. Organometallics 2006, 25, 1530–1543. (b) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589–625. (c) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696–1700. (d) Lee, S. C.; Holm, R. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3595–3600. (e) Smith, J. M.; Lachicoote, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222–9223. (f) Curley, J. J.; Cook, T. R.; Reece, S. Y.; Müller, P.; Cummins, C. C. J. Am. Chem. Soc. 2008, 130, 9394–9405. (g) Pillai, E. D.; Jaeger, T. D.; Duncan, M. A. J. Am. Chem. Soc. 2007, 129, 2297–2307. (h) Holland, P. L. Dalton Trans. 2010, 39, 5415–5425.
(81)Leigh, G. J. Acc. Chem. Res. 1992, 25, 177–181.
(82)Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621–622.
(83)(a) MacKey, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385–401. (b) Fryzuk, M. D. Chem. Commun. 2013, 49, 4866–4868. (c) Margulieux, G. W.; Semproni, S. P.; Chirik, P. J. Angew. Chem. Int. Ed. 2014, 53, 9189–9192. (d) Berben, L. A.; Kozimor, S. A. Inorg. Chem. 2008, 47, 4639–4647. (e) Fontaine, P. P.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. J. Am. Chem. Soc. 2010, 132, 12273–12285. (f) Ma, X.; Tang, Y.; Lei, M. Dalton Trans. 2014, 43, 11658–11666. (g) Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Nature Chem. 2010, 2, 30–35. (h) Benito-Garagorri, D.; Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Organometallics 2009, 28, 4807–4813. (i) Morello, L.; Ferreira, M. J.; Patrick, B. O.; Fryzuk, M. D. Inorg. Chem. 2008, 47, 1319–1323. (j) Fryzuk, M. D.; Johnson, S. A.; Patrick, B. O.; Albinati, A. ; Mason, S. A.; Koetzle, T. F. J. Am. Chem. Soc. 2001, 123, 3960–3973. (k) Pez, G. P. J. Am. Chem. Soc. 1976, 98, 8072–8078. (l) Pez, G. P.; Kwan, S. C. J. Am. Chem. Soc. 1976, 98, 8079–8083. (m) Studt, F.; MacKay, B. A.; Fryzuk, M. D.; Tuczek, F. J. Am. Chem. Soc. 2004, 126, 280–290. (n) Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. J. Am. Chem. Soc. 1998, 120, 11024–11025. (o) Shan, H.; Yang, Y.; James, A. J.; Sharp, P. R. Science 1997, 275, 1460-1462.
(84)(a) Fout, A. R.; Basuli, F.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Baik, M. –H.; Mindiola, D. J. Angew. Chem. Int. Ed. 2006, 45, 3291–3295. (b) Murray, L. J.; Weare, W. W.; Shearer, J.; Mitchell, A. D.; Abboud, K. A. J. Am. Chem. Soc. 2014, 136, 13502–13505.
(85)Hsu, W.; Chen, K. –T.; Li, Y. –S.; Cheng, P. –W.; Chen, T. –R.; Chen, J. –D. CrystEngComm 2014, 16, 10640–10648.
(86)Ogura, K.; Kurasawa, Y.; Yamaguchi, Y.; Okamoto, Y. Heterocycles 2003, 59, 283–291
(87)(a) Zhang, C. –J.; Pang, H. –J.; Tang, Q.; Wang, H. –Y.; Chen, Y. –G. J. Solid State Chem. 2010, 183, 2945–2950; (b) Liu, Q. –Y.; Xu, L. Eur. J. Inorg. Chem. 2005, 3458–3466; (c) Zhan, C. –H.; Jiang, M. –X.; Feng, Y. –L.; Cheng, J. –W. CrystEngComm 2010, 12, 420–424. (d) Wu, S.; Ma, L.; Long, L. –S.; Zheng, L. –S.; Lin, W. Inorg. Chem. 2009, 48, 2436–2442.
(88)Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798–4799.
(89)(a) Ding, K.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. J. Am. Chem. Soc. 2009, 131, 9471–9472. (b) Pfirrmann, S.; Limberg, C.; Herwig, C.; Stösser, R.; Ziemer, B. Angew. Chem., Int. Ed. 2009, 48, 3357–3361.
(90)(a) Nattinen, K. I.; Rissanen, K. Cryst. Growth Des. 2003, 3, 339–353. (b) Bodi, A. J. Phys. Chem. 1964, 68, 441–451.
(91)(a) Nattinen, K. I.; Rissanen, K. Cryst. Growth Des. 2003, 3, 339-353. (b) Bodi, A. J. Phys. Chem. 1964, 68, 441-451.
(92)(a) Fan, J.; Wang, Y. Blake, A. J.; Wilson, C.; Davies, E. S.; Khlobystov, A. N.; Schroder, M. Angew. Chem., Int. Ed. 2007, 46, 8013-8016. (b) Rios, D.; Olmstead, M. M.; Balch, A. L. Inorg. Chem. 2009, 48, 5279-5287. (c) Chainok, K.; Neville, S. M.; Forsyth, C. M.; Gee, W. J.; Murray, K. S.; Batten, S. R. CrystEngComm 2012, 14, 3717-3726.
(93)(a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926. (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736–1740.
(94)Szabo, A.; Oslund, N. S. Modern quantum chemistry: introduction to advanced electronic structure theory, 1st ed.; McGraw-Hill: New York, 1989.
(95)Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔