跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李偵綺
研究生(外文):Chen-Chi Lee
論文名稱:利用理論計算方法探討O2及C2H4在Au38及Cu38奈米團簇上的吸附及反應機制
論文名稱(外文):Adsorption and reaction mechanisms of O2 and C2H4 on Au38 and Cu38 nanoclusters: A computational study
指導教授:陳欣聰
指導教授(外文):Hsin-Tsung Chen
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:銅奈米團簇乙烯的環氧化反應吸附反應DFT計算法金奈米團簇
外文關鍵詞:copper nanoclusteradsorptiongold nanoclusterDFT calculationsEthylene epoxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用週期性之密度泛函理論 (Density functional theory, DFT) 的方法來探討乙烯及氧氣在Au38和Cu38奈米團簇上的吸附及反應機制。對C2H4/M38、O2/M38以及C2H4-O2/M38進行吸附結構預測 (M=Au, Cu) 。計算的結果發現吸附的位置有正上方 (top, T) 、橋接 (bridge, B) 、三角形面中心 (hexagonal, h) 、四面形中心 (hollow, H) ,在Au38奈米團簇上,C2H4和O2最穩定的吸附能分別為 -0.66和 -0.99 eV,Cu38奈米團簇為 -0.51和 -2.19 eV。乙烯在Au38和Cu38奈米團簇上的環氧化反應機制的位能曲面圖是使用nudged elastic band (NEB) 方法建構。氧化反應的進行是以Langmuir-Hinshelwood (LH) 機制產生環氧乙烷 (ethylene oxide, EO) 以及乙醛 (acetaldehyde, AA) 。整體反應分成兩個部分: (1) C2H4 + O2 + M38→環氧乙烷 (ethylene oxide, EO) + O/M38,此反應M為Au會放熱約 2.20 ~ 2.40 eV,若為Cu則會放熱約 2.20 ~ 3.56 eV; (2) C2H4 + O2 + M38 → 乙醛 (acetaldehyde, AA) + O/M38,反應中M為Au放熱約為3.03 ~ 3.08 eV,為Cu時,放熱約3.08 ~ 4.31 eV。最後,我們也計算了局部態密度分析 (local density of state, LDOS) 了解金或者銅奈米團簇和被吸附物之間的高催化性質。


We have investigated the adsorption and reaction mechanisms of C2H4 and O2 catalyzed by a Au38 and Cu38 nanoclusters based on periodic density-functional theory (DFT) calculations. The configurations of the adsorption of C2H4/M38, and O2/M38, as well as the coadsorption of C2H4-O2/M38 (M=Au, Cu) were predicted. We considered four different positions: top (T), bridge (B), hexagonal (h), and hollow (H) sites. The calculation results show that C2H4 and O2 are preferably adsorbed at top (T) and bridge (B) with adsorption energies of -0.66, and -0.99 eV, respectively for Au38 nanoclusters, and -0.51 and -2.19 eV for Cu38 nanoclusters. The detailed reaction mechanisms for ethylene epoxidation on Au38 and Cu38 nanoclusters has been illustrated using the nudged elastic band (NEB) method. The oxidation process takes place via the Langmuir-Hinshelwood (LH) mechanism to generate ethylene oxide andacetaldehyde. The overall reaction of C2H4 + O2 + M38 → ethylene oxide + O/M38, exothermic by 2.20 ~ 2.40 eV or 3.20 ~ 3.56 eV for M is Au or Cu respectively, while those are 3.03 ~ 3.08 eV or 3.83 ~ 4.31 eV for the production of acetaldehyde and O/M38.The nature of interaction between adsorbate and gold or copper nanoclusters has been analyzed by the detailed electronic local density of states (LDOS) to understand high catalytic activity of the gold or copper nanoclusters.


中文摘要 I
Abstract II
致謝 III
總目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 - 1 -
1-1. 前言 - 1 -
1-2. 氧氣的介紹及來源 - 1 -
1-3. 乙烯的介紹及來源 - 2 -
1-4. 選用Au38及Cu38奈米團簇的原因 - 3 -
1-5. 文獻回顧 - 4 -
第二章 理論與計算原理 - 6 -
2-1. 多電子系統計算上的近似法 - 6 -
2-2. Born-Oppenheimer 近似法 (絕熱近似法) - 7 -
2-3. 密度泛函理論 (Density Functional Theory, DFT) - 8 -
2-3-1. Hohenberg-Kohn theorem - 8 -
2-3-2. Kohn-Sham method - 9 -
2-4. 局部密度近似法 (Local density functional approximation, LDA) - 11 -
2-5. 廣義梯度近似法 (Generalized gradient approximation, GGA) - 13 -
2-6. 虛位勢 (pseudopotential) - 15 -
2-7. 態密度 (Density of state) 分析法 - 17 -
2-8. 本論文計算方法測試 - 18 -
第三章 O2及C2H4在Au38奈米團簇上的吸附及反應探討 - 20 -
3-1. 幾何結構介紹 - 20 -
3-2. O2在Au38奈米團簇的吸附反應 - 22 -
3-3. C2H4在Au38奈米團簇的吸附反應 - 25 -
3-4. O2&;C2H4在Au38奈米團簇的共吸附反應 - 28 -
3-5. O2&;C2H4在Au38奈米團簇的總反應 - 32 -
3-6. O2&;C2H4在Au38奈米團簇的局部態密度 (Local Density of State) 討論 - 42 -
第四章 O2及C2H4在Cu38奈米團簇上的吸附及反應探討 - 45 -
4-1. 幾何結構介紹 - 45 -
4-2. O2在Cu38奈米團簇的吸附反應 - 46 -
4-3. C2H4在Cu38奈米團簇的吸附反應 - 49 -
4-4. O2&;C2H4在Cu38奈米團簇的共吸附反應 - 52 -
4-5. O2&;C2H4在Cu38奈米團簇的總反應 - 55 -
4-6. O2&;C2H4在Cu38奈米團簇的局部態密度 (Local Density of state) 討論 - 65 -
第五章 結論 - 68 -
參考文獻 - 70 -
附錄 - 73 -


[1]W. Gao; X. F. Chen; J. C. Li; Q. Jiang. J. Phys. Chem. C. 2010, 114, 1147-1153.
[2]Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Angew. Chem., Int. Ed. 2004, 43, 1546.
[3]Nijhuis, T. A. R.; Visser, T.; Weckhuysen, B. M. Angew. Chem., Int. Ed. 2005, 44, 1115.
[4]Abad, A.; Concepción, P.; Corma, A.; Garcia, H. Angew. Chem., Int. Ed. 2005, 44, 4066.
[5]Chang, F. W.; Yu, H. Y.; Roselin, L. S.; Yang, H. C.; Ou, T. C. Appl. Catal. A 2006, 302, 157.
[6]Turner, M.; Golovko1, V. B.; Vaughan1, O. P. H.; Abdulkin1, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson1, B. F. G.; Lambert, R. M. Nature 2008, 454, 981.
[7]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
[8]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301.
[9]Bailie, J. E.; Abdullah, H. A.; Anderson, J. A.; Rochester, C. H.; Richardson, N. V.; Hodge, N.; Zhang, J. G.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. Phys. Chem. Chem. Phys. 2001, 3, 4113.
[10]Haruta, M. Catal. Today 1997, 36, 153.
[11]Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
[12]Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566.
[13]Haruta, M. Catalysis: Gold rush. Nature 2005, 437,1098.
[14]Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature 2005, 437, 1132.
[15]Meier, D. C.; Goodman, D. W. J. Am. Chem. Soc. 2004, 126, 1892.
[16]Chen, M. S.; Goodman, D. W. Science 2004, 306, 252.
[17]Chen, M.; Cai, Y.; Yan, Z.; Goodman, D. W. J. Am. Chem.Soc. 2006, 128, 6341.
[18]Liu, Z. P.; Jenkins, S. J.; King, D. A. Phys. Rev. Lett. 2005, 94, 196102.
[19]Liu, Z. P.; Hu, P.; Alavi, A. J. Am. Chem. Soc. 2002, 124, 14770.
[20]Bunluesin, T.; Gorte, R. J.; Graham, G. W. Appl. Catal., B 1998, 15, 107.
[21]Zalc, J. M.; Sokolovskii, V.; Loffler, D. G. J. Catal. B 2002, 206, 169.
[22]Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403.
[23]Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.
[24]Guzman, J.; Gates, B. C. Angew. Chem., Chem., Int. Ed. 2003, 42, 690.
[25]Ethylene oxide/ethylene glycol (EO/EG) processes. Shell 2010. http://www.shell.com/global/products-services/solutions-for-businesses/globalsolutions/refinery-chemical-licensing/petrochemical-technology/ethylene-oxide-processes.html
[26]Bulushev, D. A. Appl. Catal. A General. 1995, 123,2,301.
[27]Goncharova, S. N.; Paukshtis, E. A.; Bal’zhinimaev, B. S. Appl. Catal. A General. 1995, 126, 1, 67.
[28]Deng, X.; Friend, C. M. J. Am. Chem. Soc. 2005, 127, 17178.
[29]Xue, L. Q.; Pang, X. Y.; Wang, G. C. J. Comput. Chem. 2009, 30, 438.
[30]物質資料表
[31]P. Hohenberg and W. Kohn. Phys. Rev. 1964, 136, B864
[32]Kohn, Walter; Sham, Lu Jeu. Physical Review. 1965, 140 (4A): A1133–A1138.
[33]Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
[34]Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
[35]Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
[36]Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
[37]Kresse, G.; Hafner, J. J. Phys. Condens. Matter 1994, 6, 8245.
[38]Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
[39]Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
[40]Perdrw, J. P.; Yang, Y. Phys. Rev. B 1992, 45, 244.
[41]Henkelman, G. U., B. P.; Jónsson, H. . J. Chem. Phys. 2000, 113, 9901.
[42]Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
[43]Häberlen, O. D.; Chung, S.-C.; Stener, M.; Rösch, N. J. Chem. Phys. 1997, 106, 5189.
[44]Wang, Y.; Gong, X. G. J. Chem. Phys. 2006, 125, 124703.
[45]Chen, H.-T.; Chang, J.-G.; Ju, S.-P.; Chen, H.-L. J. Comput. Chem. 2010, 31, 258.
[46]Remediakis, I. N.; Lopez, N.; Nørskov, J. K. Angew. Chem., Int. Ed. 2005, 44, 1824.
[47]M. O. Ozbek; I. Onal; R. A. van Santen. Top Catal. 2012, 55, 710.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top