(3.239.33.139) 您好!臺灣時間:2021/03/05 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳羿壬
研究生(外文):Yi-Jen Chen
論文名稱:螢光金奈米團簇於磷酸鈣微脂體包覆之物性初探
論文名稱(外文):Preliminary Physical Property of Fluorescent Gold Nanoclusters Encapsulated in Lipid Calcium Phosphate Delivery System
指導教授:許毅芝許毅芝引用關係
指導教授(外文):Yih-Chih Hsu
學位類別:碩士
校院名稱:中原大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:磷酸鈣微脂體 II螢光金奈米團簇
外文關鍵詞:Lipid-Calcium-Phosphate IIFluorescent Gold Nanoclusters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣男性口腔癌 (oral cancer) 發生率與死亡率為十大癌症排名中第四高之癌症,為常見的癌症種類。光動力治療 (photodynamic therapy) 在癌症治療方式中屬非侵入性治療,具有反覆治療與無明顯副作用的特性,可用於替代化學治療與放射線治療等副作用較多之治療方式。為提升光動力治療效率,可經由組合化學治療、放射線治療及基因治療以相異作用途徑的組合治療,或是改變運送模式以提高藥物累積效率,使得藥物有效劑量降低而減低副作用生成。螢光金奈米團簇 (fluorescence gold nanoclusters, FGNC) 為奈米等級螢光物質,無細胞毒性與選擇性多元的激發光波長,使得在生物檢測影像系統的發展上具有發展潛力之物質。為探討提升光動力對於口腔癌之治療與改善口腔癌診斷方式,本研究以文獻回顧探討光動力治療與他種治療之組合治療於口腔癌治療的效益,另外在診斷口腔癌方面上,以脂質磷酸鈣 II (lipid- calcium-phosphate II, LCP II) 運送系統包覆螢光金奈米團簇之螢光物質,檢測脂質磷酸鈣包覆螢光金奈米團簇之螢光與顆粒特性,以初步探討脂質磷酸鈣運送系統結合螢光金奈米團簇應用於診斷之可能性。結果顯示光動力治療在組合化學治療的研究成果中,共在15種癌症、29株癌細胞株抑制生長試驗中抑制比例有顯著提升,並在動物模式中亦驗證了組合治療能有效抑制腫瘤生長,進而減低藥物劑量並提升治療時動物存活率,放射線治療、基因治療亦有顯著提升光動力治療效率,運送模式的改變下能有效率的累積藥物使得劑量減低,有助於減少副作用的生成,並在具抗藥性的細胞株中可透過組合治療之方式減低具抗藥性的細胞對於藥物之反應。脂質磷酸鈣包覆螢光金奈米團簇時,在濃度40 μM下脂質磷酸鈣之螢光光譜圖與螢光金奈米團簇有顯著差異,在脂質磷酸鈣的包覆下螢光強度下降達顯著差異 (p < 0.05),在穿透式電子顯微鏡的觀察中其粒徑分布範圍為10–500 nm,將穿透式電子顯微鏡檢測之結果與脂質磷酸鈣及螢光金奈米團簇相比,其在顆粒形狀與大小皆有明顯的差異。此試驗結果顯示在脂質磷酸鈣包覆螢光金奈米團簇之過程需改變螢光金奈米團簇添加之方式,以增進螢光金奈米團簇包覆之效率並改善脂質磷酸鈣於包覆螢光金奈米團簇時鈣磷核心生成之結果。


Oral cancer ranks as fourth most prevalent cancer in Taiwan, especially in male. Photodynamic therapy (PDT) can be used repeatedly without obvious side effects due to its non-invasive features. It is considered as an alternative therapy for curing oral cancer. It is usually combined with other therapy to improve its efficacy. Different curing principles may work synergistically. Another way to enhance its therapeutic efficiency is to have a better transport vehicle that would raise the accumulation efficiency at a reduced drug dose. Lower dosage would give fewer side effects. Fluorescent gold nano cluster (FGNC) is nano sized fluorescent material built based on nanotechnology. FGNC has no observed cytotoxicity and wild excitation wavelength thus a potential material for image system diagnosis. In this primary study we tried to combine FGNC with lipid-calcium-phosphate II (LCP II) delivery system to build a potential diagnosis tool for oral cancer. On combination therapy article review, former research already proved that chemotherapy combined with PDT can induce therapeutic efficiency on fifteen types of cancer with twenty-nine cell lines in vivo and proved the combination therapy was effective to inhibit tumor growth. Radiation therapy, gene therapy and changing transport model also proved that it can enhance the efficacy of PDT both in vitro and in vivo. Combination therapy is also an alternative strategy to cure drug-resistant cell lines after treatment. There was no significant difference (p < 0.05) in fluorescence intensity between FGNC and LCP II loaded with FGNC at the same concentration of 40 μM. Transmission electron microscope images reveal a non-spherical shape with a particle size ranging from 10 to 500 nm for LCP II-FGNC, which is different from LCP II and FGNC as a separate nanoparticle. The result suggests modifying the standard protocol to encapsulate FGNC with LCP II to enhance the encapsulation resulting to a better particle size and shape.


目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
壹、 緒論 1
1–1研究背景 1
1–2研究動機 3
貳、 文獻探討 5
2–1口腔癌 5
2–2光動力治療文獻 6
2–2–1光動力治療的原理 6
2–3提升光動力治療之治療方式 9
2–3–1化學治療藥物 9
2–3–2放射線治療 31
2–3–3基因療法 32
2–3–4藥物輸送模式 33
2–3–5提升光動力治療之治療方式歸納 41
2–4奈米粒子藥物運輸系統 53
2–4–1微脂體 53
2–4–2滲透與滯留增加效應 55
2–5螢光金奈米團簇診斷文獻探討 56
參、 材料與方法 57
3–1螢光金奈米團簇與鈣磷微脂體介紹 57
3–1–1螢光金奈米團簇介紹 57
3–1–2 LCP II 包覆技術介紹 57
3–2螢光金奈米團簇穩定性試驗 58
3–2–1螢光金奈米團簇螢光測定 58
3–3 LCP II螢光金奈米團簇之製備與定性 59
3–3–1 LCP II螢光金奈米團簇製備 59
3–3–2 LCP II螢光金奈米團簇粒徑測定 59
3–3–3 LCP II螢光金奈米團簇螢光強度測定 60
肆、 結果 61
4–1螢光金奈米團簇螢光測定實驗結果 61
4–1–1螢光金奈米團簇螢光衰變測定實驗結果 61
4–2 LCP II螢光金奈米團簇粒徑測定 83
4–2–1粒徑儀測定 83
4–2–2穿透式電子顯微鏡測定 85
4–2–3 LCP II包覆螢光金奈米團簇螢光強度測定實驗結果 86
伍、 討論 94
5–1提升光動力治療之治療方式 94
5–2螢光金奈米團簇螢光衰變測定 95
5–3 LCP II螢光金奈米團簇螢光強度與定性 95
陸、 結論 97
柒、 參考文獻 99


柒、參考文獻
1.衛生福利部國民健康署, 民國102年主要死因分析. 2014. 1(1): p. 1-21.
2.康芳瑜 and 余珮蓉, 照顧一位口腔癌患者術後於加護病房的護理經驗. 志為護理, 2009. 8(4): p. 129-136.
3.國家衛生研究院癌症研究組, 口腔癌之治療共識. 1998. 1(1): p. 1-14.
4.高壽延, 陳雅薇, 吳政憲, 羅文良, 雷文天, and 張哲壽, 口腔癌篩檢. 2012. 1(7): p. 51-64.
5.Tarik F. Massoud and Sanjiv S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes &; Development, 2003. 17(5): p. 545-580.
6.Emerson C. Perin, Mei Tian, Frank C. Marini III, Guilherme V. Silva, Yi Zheng, Fred Baimbridge, Xin Quan, Marlos R. Fernandes, Amir Gahremanpour, Daniel Young, Vincenzo Paolillo, Uday Mukhopadhyay, Agatha T. Borne, Rajesh Uthamanthil, David Brammer, James Jackson, William K. Decker, Amer M. Najjar, Michael W. Thomas, Andrei Volgin, Brian Rabinovich, Suren Soghomonyan, Hwan-Jeong Jeong, Jesse M. Rios, David Steiner, Simon Robinson, Osama Mawlawi, Tinsu Pan, Jason Stafford, Vikas Kundra, Chun Li, Mian M. Alauddin, James T. Willerson, Elizabeth Shpall, and Juri G. Gelovani, Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One, 2011. 6(9): e22949.
7.Shuan Lin, Xiaoyan Xie, Manishkumar R Patel, Yao-Hung Yang, Zongjin Li, Feng Cao, Oliver Gheysens, Yan Zhang, Sanjiv S Gambhir, Jiang Hong Rao, and Joseph C Wu, Quantum dot imaging for embryonic stem cells. BMC Biotechnology, 2007. 7: p. 67-76.
8.Nicolas Solban Jonathan P. Celli, Alvin Liang, Stephen P. Pereira and Tayyaba Hasan., Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines. Lasers in Surgery and Medicine, 2011. 43(7): p. 565-574.
9.Amarnath Sharma and Uma S. Sharma, Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 1997. 154(2): p. 123-140.
10.Jun Li, Yang Yang, and Leaf Huang, Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012. 158(1): p. 108-114.
11.Brad W. Neville and Terry A. Day, Oral cancer and precancerous lesions. CA: A Cancer Journal for Clinicians, 2002. 52(4): p. 195-215.
12.Ethan D. Sternberg, David Dolphin, and Christian Brückner, Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron, 1998. 54(17): p. 4151-4202.
13.James S. McCaughan Jr, Photodynamic Therapy: A Review. Drugs &; Aging, 1999. 15(1): p. 49-68.
14.Ron R. Allison, Gordon H. Downie, Rosa Cuenca, Xin-Hua Hu, Carter J.H. Childs, and Claudio H. Sibata, Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 2004. 1(1): p. 27-42.
15.Roger Ackroyd, Clive Kelty, Nicola Brown, and Malcolm Reed, The history of photodetection and photodynamic therapy. Photochemistry and Photobiology 2001. 74(5): p. 656-669.
16.Barbara W. Henderson and Thomas J. Dougherty, How does photodynamic therapy work. Photochemistry and Photobiology, 1992. 55(1): p. 145-157.
17.Brian C. Wilson, Photodynamic therapy for cancer: principles. Canadian Journal of Gastroenterology, 2002. 16(6): p. 393-396.
18.Thomas J. Dougherty, Charles J. Gomer, Barbara W. Henderson, Giulio Jori, David Kessel, Mladen Korbelik, Johan Moan, and Qian Peng, Photodynamic therapy. Journal of the National Cancer Institute, 1998. 90(12): p. 889-905.
19.Denise Bechet, Pierre Couleaud, Céline Frochot, Marie-Laure Viriot, François Guillemin, and Muriel Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 2008. 26(11): p. 612-621.
20.Qi Xie, Lin Jia, Yan-Hong Liu, and Cheng-Gang Wei, Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. World Journal of Gastroenterology, 2009. 15(6): p. 737-741.
21.Elvira Crescenzi, Angela Chiaviello, Gianfranco Canti, Elena Reddi, Bianca Maria Veneziani, and Giuseppe Palumbo, Low doses of cisplatin or gemcitabine plus photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299). Molecular Cancer Therapeutics, 2006. 5(3): p. 776-785.
22.Berenice Diez, Rosalía I. Cordo Russo, Julieta Teijo, Silvia E. Hajos, Alcira María del Carmen Batlle, and Haydée Fukuda, Ros production by endogenously generated protoporphyrin IX in murine leukemia cells. Cellular and Molecular Biology, 2009. 55(2): p. 15-19.
23.Berenice Diez, Glenda Ernst, María Julieta Teijo, Alcira Batlle, Silvia Hajos, and Haydée Fukuda, Combined chemotherapy and ALA-based photodynamic therapy in leukemic murine cells. Leukemia Research, 2012. 36(9): p. 1179-1184.
24.Ionel Rosenthal, Phthalocyanines as photodynamic sensitizers. Photochemistry and Photobiology, 1991. 53(6): p. 859-870.
25.Gianfranco Cantia, Paola Franco, Ornella Marelli, Rinaldo Cubeddu, Paola Taroni, and Roberta Ramponi, Comparative study of the therapeutic effect of photoactivated hematoporphyrin derivative and aluminum disulfonated phthalocyanines on tumor bearing mice. Cancer Letters, 1990. 53(2–3): p. 123-127.
26.Gianfranco Cantia, Angelo Nicolina, Rinaldo Cubeddub, Paola Taronib, Gaetano Bandieramontec, and Gianluca Valentinib, Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors. Cancer Letters, 1998. 125(1-2): p. 39-44.
27.C. Compagnin, Maddalena Mognato, Lucia Celotti, Gianfranco Canti, Giuseppe Alberto Palumbo, and Elena Reddi, Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin in combination with photodynamic therapy. Cell Proliferation, 2010. 43(3): p. 262-274.


28.Elvira Crescenzi, Linda Varriale, Mariangela Iovino, Angela Chiaviello, Bianca Maria Veneziani, and Giuseppe Palumbo, Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Molecular Cancer Therapeutics, 2004. 3(5): p. 537-544.
29.Hui-Qing Ma, Xiao-Qiang Wei, Ai-Hong Liu, and You-Zhong Zhang, Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pacific Journal of Cancer Prevention, 2013. 14(5): p. 3023-3028.
30.Imran Rizvi, Jonathan P. Celli, Conor L. Evans, Adnan O. Abu-Yousif, Alona Muzikansky, Brian W. Pogue, Dianne Finkelstein, and Tayyaba Hasan, Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Research, 2010. 70(22): p. 9319-9328.
31.Gang Sun, Marlys A. Anderson, Emmanuel C. Gorospe, Cadman L. Leggett, Lori S. Lutzke, Louis M. Wong Kee Song, Michael Levy, and Kenneth K. Wang, Synergistic effects of photodynamic therapy with HPPH and gemcitabine in pancreatic cancer cell lines. Lasers in Surgery and Medicine, 2012. 44(9): p. 755-761.
32.Lan-Bo Chen, Mitochondrial Membrane Potential in Living Cells. Annual Review of Cell Biology, 1988. 4(1): p. 155-181.
33.Duska Separovic, Ziad H. Saad, Ethan A. Edwin, Jacek Bielawski, Jason S. Pierce, Eric Van Buren, and Alicja Bielawska, C16-Ceramide analog combined with Pc 4 photodynamic therapy evokes enhanced total ceramide accumulation, promotion of DEVDase activation in the absence of apoptosis, and augmented overall cell killing. Journal of Lipids, 2011. 2011: 713867.
34.Duska Separovic, Jacek Bielawski, Jason S. Pierce, Soroush Merchant, Adi L. Tarca, Besim Ogretmen, and Mladen Korbelik, Increased tumour dihydroceramide production after Photofrin-PDT alone and improved tumour response after the combination with the ceramide analogue LCL29. Evidence from mouse squamous cell carcinomas. British Journal of Cancer, 2009. 100(4): p. 626-632.
35.Duska Separovic, Jacek Bielawski, Jason S. Pierce, Soroush Merchant, Adi L. Tarca, Gaurav Bhatti, Besim Ogretmen, and Mladen Korbelik, Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. International Journal of Oncology, 2011. 38(2): p. 521-527.
36.Cy Hyun Kim, Chung-Wook Chung, Hye Myeong Lee, Do Hyung Kim, Tae Won Kwak, Young-IL Jeong, and Dae Hwan Kang, Synergistic effects of 5-aminolevulinic acid based photodynamic therapy and celecoxib via oxidative stress in human cholangiocarcinoma cells. International Journal of Nanomedicine, 2013. 8: p. 2173-2186.
37.Yong Wan Kim, Su Mi Bae, Gantumur Battogtokh, Hyo Joo Bang, and Woong Shick Ahn, Synergistic anti-tumor effects of combination of photodynamic therapy and arsenic compound in cervical cancer cells: in vivo and in vitro studies. PLoS One, 2012. 7(6): e38583.
38.Jin Chul Ahn, Raktim Biswas, and Phil Sang Chung, Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers in Surgery and Medicine, 2012. 44(10): p. 840-849.
39.Shibendra N. Datta, Richard Allman, Christopher Loh, Margaret K. Mason, and Philip N. Matthews, Effect of photodynamic therapy in combination with mitomycin C on a mitomycin- resistant bladder cancer cell line. British Journal of Cancer, 1997. 76(3): p. 312-317.
40.Sirinart Chio-Srichan, Noufissa Oudrhiri, Annelise Bennaceur-Griscelli, Ali G. Turhan, Paul Dumas, and Matthieu Refregiers, Toxicity and phototoxicity of Hypocrellin A on malignant human cell lines, evidence of a synergistic action of photodynamic therapy with Imatinib mesylate. Journal of Photochemistry and Photobiology B: Biology, 2010. 99(2): p. 100-104.
41.Seungwoo Park, Sung Pil Hong, Tae Yoon Oh, Seungmin Bang, Jae Bock Chung, and Si Young Song, Paclitaxel augments cytotoxic effect of photodynamic therapy using verteporfin in gastric and bile duct cancer cells. Photochemical &; Photobiological Sciences, 2008. 7(7): p. 769-774.

42.Sun Gon Kim, Ji Won Hong, Sung Hyun Boo, Myung Gu Kim, Kang Dae Lee, Jin Chul Ahn, Hee Jun Hwang, Jang In Shin, Sang Joon Lee, Jang Keun Oh, and Phil Sang Chung, Combination treatment of Cetuximab and photodynamic therapy in SNU-1041 squamous cancer cell line. Oncology Reports, 2009. 22(4): p. 701-708.
43.Ramaswamy Bhuvaneswari, Yik Yuen Gan, Khee Chee Soo, and Malini Olivo, Targeting EGFR with photodynamic therapy in combination with erbitux enhances in vivo bladder tumor response. Molecular Cancer, 2009. 8: p. 94-104.
44.Kjeld Schmiegelow, Advances in individual prediction of methotrexate toxicity: a review. British Journal of Haematology, 2009. 146(5): p. 489-503.
45.Bruce N. Cronstein, Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis &; Rheumatism, 1996. 39(12): p. 1951-1960.
46.Yingyu Ma, Donald L. Trump, and Candace S. Johnson, Vitamin D in combination cancer treatment. Journal of Cancer, 2010. 1: p. 101-107.
47.Richard Allman, Pam Cowburn, and Malcolm David Mason, Effect of photodynamic therapy in combination with ionizing radiation on human squamous cell carcinoma cell lines of the head and neck. British Journal of Cancer, 2000. 83(5): p. 655-661.
48.Lei Xia, Wei Guan, Dong Wang, Yun-Song Zhang, Lin-Li Zeng, Zeng-Peng Li, Ge Wang, and Zhen-Zhou Yang, Killing effect of Ad5/F35-APE1 siRNA recombinant adenovirus in combination with hematoporphrphyrin derivative-mediated photodynamic therapy on human nonsmall cell lung cancer. BioMed Research International, 2013. 2013: 957913.
49.Kwangmeyung Kim, Jong Ho Kim, Hyungkyu Park, Yoo-Shin Kim, Kyeongsoon Park, Heayun Nam, Seulki Lee, Jae Hyung Park, Rang-Woon Park, In San Kim, Kuiwon Choi, Sang Yoon Kim, Kinam Park, and Ick Chan Kwon, Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. Journal of Controlled Release, 2010. 146(2): p. 219-227.


50.So Jin Lee, Heebeom Koo, Hayoung Jeong, Myung Sook Huh, Yongseok Choi, Seo Young Jeong, Youngro Byun, Kuiwon Choi, Kwangmeyung Kim, and Ick Chan Kwon, Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. Journal of Controlled Release, 2011. 152(1): p. 21-29.
51.Ayman Khdair, Hitesh Handa, Guangzhao Mao, and Jayanth Panyam, Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 71(2): p. 214-222.
52.Ayman Khdair, Di Chen, Yogesh Patil, Linan Ma, Q. Ping Dou, Malathy P.V. Shekhar, and Jayanth Panyam, Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 2010. 141(2): p. 137-144.
53.Tingting Wang, Lingyu Zhang, Zhongmin Su, Chungang Wang, Yi Liao, and Qin Fu, Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Applied Materials &; Interfaces, 2011. 3(7): p. 2479-2486.
54.Jarunee Hongrapipat, Pavla Kopečková, Jihua Liu, Sompol Prakongpan, and Jindřich Kopeček, Combination chemotherapy and photodynamic therapy with fab' fragment targeted HPMA copolymer conjugates in human ovarian carcinoma cells. Molecular Pharmaceutics, 2008. 5(5): p. 696-709.
55.C. Mathew Peterson, Jing Ming Lu, Yongren Sun, C. Anthony Peterson, Jane-Guo Shiah, Richard C. Straight, and Jindhch Kopecek, Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Research, 1996. 56(17): p. 3980-3985.
56.Jane Guo Shiah, Yongen Sun, Pavla Kopečková, Charlesmatthew Peterson, Richard C. Straight, and Jindřich I. Kopeček, Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e(6)-OV- TL 16 antibody immunoconjugates. Journal of Controlled Release, 2001. 74(1-3): p. 249-253.
57.Carlos A. Medina, Maria Jose Santos-Martinez, Anna Radomski, Owen I. Corrigan, and Marek W. Radomski, Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 2007. 150(5): p. 552-558.
58.Eric A. Murphy, Bharat K. Majeti, Leo A. Barnes, Milan Makale, Sara M. Weis, Kimberly Lutu-Fuga, Wolfgang Wrasidlo, and David A. Cheresh, Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proceedings of the National Academy of Sciences, 2008. 105(27): p. 9343-9348.
59.Gaurav Sahay, Daria Y. Alakhova, and Alexander V. Kabanov, Endocytosis of nanomedicines. Journal of Controlled Release, 2010. 145(3): p. 182-195.
60.Jun Li, Yun-Ching Chen, Yu-Cheng Tseng, Subho Mozumdar, and Leaf Huang, Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of Controlled Release, 2010. 142(3): p. 416-421.
61.Shyh-Dar Li and Leaf Huang, Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009. 1788(10): p. 2259-2266.
62.Yang Yang, Yunxia Hu, Yuhua Wang, Jun Li, Feng Liu, and Leaf Huang, Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung caner. Molecular Pharmaceutics, 2012. 9(8): p. 2280-2289.
63.Hiroshi Maeda, Jun Wu, Tomohiro Sawa, Yasuhiro Matsumura, and Katsuyoshi Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1–2): p. 271-284.
64.Hiroshi Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 2001. 41(1): p. 189-207.
65.Ralph Weissleder, Molecular imaging in cancer. Science, 2006. 312(5777): p. 1168-1171.
66.Shirin Ghaderi, Bala Ramesh, and Alexander M. Seifalian, Fluorescence nanoparticles "quantum dots" as drug delivery system and their toxicity: a review. Journal of Drug Targeting, 2011. 19(7): p. 475-486.
67.James Chen Yong Kah, Kiang Wei Kho, Caroline Guat Leng Lee, Colin James Richard, Ze Xiang Shen, Khee Chee Soo, and Malini Carolene Olivo, Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. International Journal of Nanomedicine 2007. 2(4): p. 785-798.
68.Cheng-An J. Lin, Ting-Ya Yang, Chih-Hsien Lee, Sherry H. Huang, Ralph A. Sperling, Marco Zanella, Jimmy K. Li, Ji-Lin Shen, Hsueh-Hsiao Wang, Hung- I. Yeh, Wolfgang J. Parak, and Walter H. Chang, Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano, 2009. 3(2): p. 395-401.
69.洪瑋勵, 奈米金團簇對小鼠胚胎發育的影響, in 生物科技研究所. 2010, 中原大學. p. 46.
70.Rajkumar Banerjee, Pradeep Tyagi, Song Li, and Leaf Huang, Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 2004. 112(4): p. 693-700.
71.Ana Blandino, Manuel Macías, and Domingo Cantero, Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. Journal of Bioscience and Bioengineering, 1999. 88(6): p. 686-689.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔