跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭婉容
研究生(外文):Wan-Rong Kuo
論文名稱:發光二極體光照刺激對高血糖鼠燒燙傷口分泌表皮生長因子的影響
論文名稱(外文):Effects of LED Light Irradiation on the Secretion of EGF from the Burns of Hyperglycemic Rats
指導教授:謝瑞香吳木榮吳木榮引用關係
指導教授(外文):Jui-Hsiang HsiehMu-Zon Wu
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:表皮生長因子高血糖鼠發光二極體
外文關鍵詞:hyperglycemic rats.epidermal growth factorlight-emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究為探討糖尿病是否會對表皮生長因子(epidermal growth factor, EGF)的分泌所造成影響,並且在傷口癒合過程中加入光照刺激的條件,觀察是否能促進EGF之分泌,進而達到加速傷口癒合的效果。實驗選用Wistar大鼠作為實驗動物模型,實驗組別分為(1)燙傷組(2)燙傷照光組(3)高血糖燙傷組(4)高血糖燙傷照光組。在各組老鼠背部製造1x1平方公分的傷口,接著使用發光二極體(波長630-nm、平均功率14-mW/cm2)對照光組別的傷口進行相隔48小時一次、每次280秒的光照處理。並做EGF生長因子分析、傷口外觀觀察與組織切片來評估傷口癒合狀況。
  實驗結果發現,使用630-nm LED光照刺激正常鼠及高血糖鼠燙傷傷口,可以促使傷口外觀面積縮小。在使用Elisa Kit檢測EGF濃度部分,燙傷照光組於燙傷後第2天開始大量增加,相較於燙傷組提早了兩天到達峰值,而高血糖燙傷照光組初期所測得的EGF濃度相對於高血糖燙傷組高,且趨勢與燙傷組相似。實驗結果表示,630-nm LED光刺激能促進傷口中的EGF提早分泌,而達到加速傷口癒合的效果。



  The aim of this study was to investigate effect of light-emitting diode (LED) light irradiation on the secretion of epidermal growth factor(EGF) from the burns of hyperglycemic rats. This study used Wistar rats. The rats were divided into four groups: 1. Burned 2. Burned+LED 3. Hyperglycemic(Hyper.)+Burned 4.Hyper. Burned + LED. Rats received intraperitoneal injections of Alloxan monohydrate (90 mg/kg) with a blood glucose of 300 mg/dL. The wounds(1x1cm2) on the back of the rats were treated with LED (630 nm, 14 mW/cm2, 280 sec, total energy 3.92 J/cm2, once every two days). Wound healing were evaluated by the concentration of EGF, observe the appearance of the wound and histological evaluation.
  Our results showed that LED-treated promote reducing wound area in wound healing process. The concentration of EGF in group 2 is reaches a peak two days earlier than the group 1. The trend of group 4 and group 1 are similar. However, there is no significant differences in secretion statistically (P>0.05). In conclusion, we provide evidence, 630-nm LED light seems to promote the EGF stimulation peaked earlier, to achieve the effect of accelerating wound healing.



中文摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章 緒論
1.1 前言
1.2 研究目的
第二章 文獻回顧
2.1 糖尿病對於傷口癒合的影響
2.2 Alloxan誘發高血糖機制
2.3 表皮生長因子(EGF)對傷口癒合的影響
2.4 低能量光照對傷口的影響
第三章 材料方法
3.1 實驗藥品
3.2 實驗儀器設備
3.3 實驗動物與分組
3.4 高血糖誘導模型
3.5 傷口製造
3.6 光源設備與光照刺激參數
3.7 傷口外觀拍照
3.8 傷口取樣
3.9 組織切片製作與分析
3.10 Epidermal growth factor含量檢測
3.11 統計方法
第四章 實驗結果
4.1 燙傷傷口外觀觀察
4.2 組織學分析
4.3 EGF檢測結果
第五章 研究討論
第六章 結論
第七章 未來展望
參考文獻
附錄


圖目錄
圖 1 傷口癒合過程的階段示意圖
圖 2 不同修復階段於正常成人的傷口示意圖
圖 3 Alloxan及STZ誘導糖尿病的毒性作用示意圖
圖 4 Alloxan與葡萄糖分子形狀相似
圖 5 藥劑誘導糖尿病期間之血糖變化(Alloxan:I-IV,STZ:II-IV)
圖 6 Alloaxn氧化還原反應及細胞性保護酶(cytoprotective enzymes)保護作用
圖 7 傷口癒合過程中的各種細胞及生長因子作用示意圖
圖 8 動物傷口模型分組
圖 9 大鼠傷口位置示意圖
圖10 組織取樣示意圖
圖11 第0~10天燙傷傷口外觀癒合情形
圖12 第12~20天燙傷傷口外觀癒合情形
圖13 正常鼠未燙傷皮膚組織(A:50x、B:100x、C:400x)
圖14 正常鼠燙傷後皮膚組織(A:50x、B:100x、C:400x)
圖15 高血糖鼠未燙傷皮膚組織(A:50x、B:100x、C:400x)
圖16 高血糖鼠燙傷後皮膚組織(A:50x、B:100x、C:400x)
圖17 正常鼠與高血糖鼠(誘導後第8天)未燙傷皮膚組織切片圖
圖18 正常鼠與高血糖鼠未燙傷皮膚組織EGF含量圖
圖19 正常鼠與高血糖鼠皮膚組織燙傷後第0天EGF含量圖
圖20 燙傷組第2~20天EGF含量圖
圖21 燙傷照光組第2~20天EGF含量圖
圖22 高血糖燙傷組第2~20天EGF含量圖
圖23 高血糖燙傷照光組第2~20天EGF含量圖
圖24 燙傷組與燙傷照光組第2~20天EGF濃度比較圖
圖25 高血糖燙傷組和高血糖燙傷照光組第2~20天EGF濃度比較圖
圖26 燙傷組與高血糖燙傷組第2~20天EGF濃度比較圖
圖27 四個組別第2~20天EGF濃度比較圖


表目錄
表格1 正常鼠與高血糖鼠皮膚組織燙傷前後EGF含量值
表格2 正常鼠與高血糖鼠各組燙傷後第2~20天EGF含量值
[1]Danaei, G., et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 2011. 378(9785): p. 31-40.
[2]Alwan, A., Global status report on noncommunicable diseases 2010. 2011: World Health Organization.
[3]Morrish, N.J., et al., Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 2001. 44 Suppl 2: p. S14-21.
[4]Snyder, R.J., Treatment of nonhealing ulcers with allografts. Clin Dermatol, 2005. 23(4): p. 388-95.
[5]Moreo, K., Understanding and overcoming the challenges of effective case management for patients with chronic wounds. Case Manager, 2005. 16(2): p. 62-3, 67.
[6]Stadelmann, W.K., A.G. Digenis, and G.R. Tobin, Physiology and healing dynamics of chronic cutaneous wounds. The American Journal of Surgery, 1998. 176(2, Supplement 1): p. 26S-38S.
[7]Falanga, V., Wound healing and its impairment in the diabetic foot. The Lancet, 2005. 366(9498): p. 1736-1743.
[8]Singer, A.J. and R.A. Clark, Cutaneous wound healing. N Engl J Med, 1999. 341(10): p. 738-46.
[9]Robson, M.C., WOUND INFECTION: A Failure of Wound Healing Caused by an Imbalance of Bacteria. Surgical Clinics of North America, 1997. 77(3): p. 637-650.
[10]Almeida, S.M.d., R.I. Ferreira, and F.N. Bóscolo, Influence of irradiation on collagen content during wound healing in diabetic rats. Pesquisa Odontológica Brasileira, 2002. 16: p. 293-298.
[11]Meireles, G.C., et al., Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg, 2008. 26(1): p. 47-54.
[12]Jeffcoate, W.J. and K.G. Harding, Diabetic foot ulcers. Lancet, 2003. 361(9368): p. 1545-51.
[13]Blakytny, R. and E. Jude, The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Medicine, 2006. 23(6): p. 594-608.
[14]Lenzen, S., The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 2008. 51(2): p. 216-26.
[15]Shaw Dunn, J. and N.G.B. McLetchie, EXPERIMENTAL ALLOXAN DIABETES IN THE RAT. The Lancet, 1943. 242(6265): p. 384.
[16]Lenzen, S. and R. Munday, Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochemical Pharmacology, 1991. 42(7): p. 1385-1391.
[17]Weaver, D.C., et al., Molecular requirements for recognition at glucoreceptor for insulin release. Mol Pharmacol, 1979. 16(2): p. 361-8.
[18]Gorus, F.K., W.J. Malaisse, and D.G. Pipeleers, Selective uptake of alloxan by pancreatic B-cells. Biochem J, 1982. 208(2): p. 513-5.
[19]Winterbourn, C.C. and R. Munday, Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH. formation. Biochem Pharmacol, 1989. 38(2): p. 271-7.
[20]Winterbourn, C.C., W.B. Cowden, and H.C. Sutton, Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms. Biochem Pharmacol, 1989. 38(4): p. 611-8.
[21]Munday, R., Dialuric acid autoxidation. Effects of transition metals on the reaction rate and on the generation of "active oxygen" species. Biochem Pharmacol, 1988. 37(3): p. 409-13.
[22]Cohen, G. and R.E. Heikkila, The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem, 1974. 249(8): p. 2447-52.
[23]Schultz, G., W. Clark, and D.S. Rotatori, EGF and TGF-α in wound healing and repair. Journal of Cellular Biochemistry, 1991. 45(4): p. 346-352.
[24]Cohen, S., Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem, 1962. 237: p. 1555-62.
[25]Kumar, V., et al., Robbins and Cotran pathologic basis of disease. 2005: Elsevier Saunders.
[26]Mustoe, T.A., et al., Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest, 1991. 87(2): p. 694-703.
[27]Brown, G.L., et al., Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med, 1989. 321(2): p. 76-9.
[28]Franklin, J.D. and J.B. Lynch, Effects of topical applications of epidermal growth factor on wound healing. Experimental study on rabbit ears. Plast Reconstr Surg, 1979. 64(6): p. 766-70.
[29]Nanney, L.B., Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol, 1990. 94(5): p. 624-9.
[30]Tsang, M.W., et al., Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care, 2003. 26(6): p. 1856-61.
[31]da Silva, J.P., et al., Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg, 2010. 28(1): p. 17-21.
[32]Rezende, S.B., et al., Effects of a single near-infrared laser treatment on cutaneous wound healing: biometrical and histological study in rats. J Photochem Photobiol B, 2007. 87(3): p. 145-53.
[33]Houreld, N.N. and H. Abrahamse, Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med Sci, 2008. 23(1): p. 11-8.
[34]de Sousa, A.P., et al., Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg, 2010. 28(4): p. 547-52.
[35]de Sousa, A.P., et al., Laser and LED phototherapies on angiogenesis. Lasers Med Sci, 2013. 28(3): p. 981-7.
[36]陳岱羚, 發光二極體刺激對糖尿病老鼠燒燙傷口癒合之影響. 中原大學, 2005.
[37]楊智超, 發光二極體刺激對豬燒傷傷口癒合之影響. 中原大學, 2005.
[38]謝岳峰, 光刺激對纖維母細胞及角質細胞影響. 中原大學, 2005.
[39]Abayomi, A.I., et al., Effect of Magnesium pre-treatment on Alloxan induced hyperglycemia in rats. African Health Sciences, 2011. 11(1): p. 79-84.
[40]Tintinalli, Judith E. Emergency Medicine: A Comprehensive Study Guide (Emergency Medicine (Tintinalli)). New York: McGraw-Hill Companies. 2010: 1374–1386.
[41]紀慧怡, 發光二極體光照刺激對高血糖鼠燒燙傷口分泌血小板衍生性生長因子的影響. 中原大學, 2013.
[42]劉益廷, 發光二極體光照刺激對高血糖鼠燒燙傷口之轉化生長因子β1影響. 中原大學, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top