跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾溫維
研究生(外文):Wen-Wei Chung
論文名稱:高速表面瑕疵深度檢測系統
論文名稱(外文):A High-Speed Inspection System for Depth Detection of Surface Defects
指導教授:章明章明引用關係
指導教授(外文):Ming Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:55
中文關鍵詞:投射條紋法黑白線型感光耦合元件相移演算法表面瑕疵深度檢測
外文關鍵詞:phase shiftingdepth detection of surface defectsmonochrome linear charge-coupled deviceprojected fringe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著代工產業的進展,各種產品的全檢需求愈來愈多,以i-pad背板的瑕疵檢測而言,須達到每片15秒內、深度檢出率為1μm的規格,但目前並無合適的自動化檢測設備問世,現階段產業仍以人工檢視為主流,因而常面臨瑕疵檢測良率不穩定以及廠商人事成本與日俱增之窘境,故本研究遂針對生產線末端產品的尺寸與瑕疵檢測,構思一套高速表面瑕疵深度檢測系統,期盼能取代人工而達到自動化檢測目標。
本研究係使用4K之黑白線型感光耦合元件(Charge-coupled Device,CCD)進行線掃描擷取影像,取像line rate最高可達54 KHz,利用數位光源投射系統投射光柵並搭配高速線性移動平台模擬輸送帶運送,建構一套高速、高解析度表面瑕疵深度檢測系統。本系統係以相移演算法與投射條紋法為基礎,執行瑕疵與尺寸檢測,傳統相移法通常必須擷取至少三張干涉影像,而本簡化型相移干涉法中僅需擷取兩張干涉影像與一張參考光影像,即可求出區域中之相對高度分佈,達到量測物體表面瑕疵深度的目的。
為了驗證本系統之精度,採用三種不同高度標準階高片,分別為1.12 mm、1.14 mm、1.15 mm,使其合併後進行量測,得到平均階高為20.224±0.69 ( 2σ) μm 和10.18±1.12 ( 2σ) μm,可知本系統目前之檢測精度可達1μm 。整體而言,以本研究量測技術為主軸,有足夠的能力達成高速、高精度、高解析及半自動的產業檢測需求。



With the development of the foundry industry, increasing demand for the product is detected. In defect detection on i-pad backplane for example, is required 15 seconds of each piece, the defect detection rate was 1μm. There is no suitable automated testing equipment, is still manual inspection. Therefore manufacturers faced with defect detection instability and increase personnel costs. The study idea of a high-speed inspection system for depth detection of surface defects
A High-Speed Inspection System for measuring product size and defect detection. Look forward to replace the manual and achieve automatic detection.
The system using 4K monochrome linear charge-coupled device to scan image, it line rate up to 54 KHz, using digital light projection system projection grating and with high-speed linear platform simulation conveyor transport, constructed a high-speed, high-resolution inspection system for depth detection. System based on phase shifting and projected fringe to defect and size detection. Traditional phase shift method must capture at least three interference image, but this study only capture two interference image with a reference light image. To calculate area relative height distribution by phase reduction, it can measure the depth detection of surface defects.
In order to verify accuracy of the system, using three different standard gauge block, 1.12 mm, 1.14 mm, 1.15 mm, merger three block and measure. The average was 20.224±0.69 ( 2σ)μm and 10.18±1.12 ( 2σ)μm. Result shows that the system accuracy can reach 1μm. Overall, this study measurement technique have ability to achieve high-speed, high-accuracy, high-resolution and semiautomatic industrial detection.



摘要..........................................................I
Abstract.......................................................III
致謝............................................................IV
目錄.............................................................V
圖目錄.........................................................VII
表目錄..........................................................IX
第一章 緒論.....................................................1
1-1研究背景與目的.................................................1
1-2文獻回顧......................................................2
1-3本文架構......................................................4
第二章 量測原理.................................................5
2-1疊紋法量測技術.................................................5
2-1-1投射疊紋法..................................................5
2-1-2相移干涉術..................................................7
2-1-2-1定量相移法則..............................................8
2-2背景消除.....................................................12
2-3投射疊紋掃描量測技術..........................................14
第三章 實驗裝置與步驟............................................19
3-1量測系統......................................................19
3-1-1影像擷取系統.................................................20
3-1-2移動平台控制系統..............................................21
3-1-3光柵投影設備.................................................24
3-2 實驗步驟......................................................25
第四章 實驗結果與討論.............................................27
4-1量測精度驗證....................................................27
4-2 BGA基板量測結果................................................30
4-3平板背板量測結果................................................32
4-4藍寶石基板量測結果..............................................35

第五章 結論與未來展望.............................................38
參考文獻..........................................................40
圖目錄
圖2-1投射條紋輪廓量測原理.........................................................7
圖2-2 2π不連續圖.......................................................................10
圖2-3 2π連續圖...........................................................................11
圖2-4投射疊紋掃描量測架構示意圖.............................................17
圖2-5投射條紋掃描法所獲得之結果.............................................17
圖2-6相移量示意圖.....................................................................18
圖3-1系統架構示意圖..................................................................19
圖3-2 ELiiXA-3V實體圖..............................................................20
圖3-3 ELiiXA-3V 感測器間距.....................................................21
圖3-4 Makro-Planar 2/50...............................................................21
圖3-5五相步進馬達 (高解析度型) ..............................................22
圖3-6平台誤差累積圖(a)補償前誤差累積圖................................23
圖3-6平台誤差累積圖(b)補償後誤差累積圖................................23
圖3-7高精度移動平台.................................................................23
圖3-8交叉滾子導軌....................................................................24
圖3-9 DLP 實體圖.......................................................................25
圖3-10 DLP內部DMD鏡面尺寸分佈示意圖.................................25
圖3-11實驗流程...........................................................................26
圖4-1階高片…............................................................................28
圖4-2相機擷取之階高標準片影像….............................................28
圖4-3高度圖................................................................................29
圖4-4階高10微米之相位差..........................................................29
圖4-5階高20微米之相位差..........................................................30
圖4-6 BGA全貌...........................................................................31
圖4-7相機擷取之BGA影像..........................................................32
圖4-8廓瑕疵深度重建圖..............................................................32
圖4-9瑕疵深度圖(x=1~7000,y=1810) ............................................33
圖4-10 平板背板完整外型...........................................................34
圖4-11相機擷取之背板影像.........................................................34
圖4-12平板背板廓瑕疵深度重建圖...............................................35
圖4-13瑕疵深度圖(x=5100,y=1~4096)...........................................35
圖4-14待測物藍寶石基板全貌.....................................................37
圖4-15相機擷取之背板影像.........................................................37
圖4-16藍寶石基板廓瑕疵深度重建圖...........................................38
圖4-17瑕疵深度圖(x=1~7000,y=1800) ..........................................38
表目錄
表2-1 2π相位校正.......................................................................11
表3-1 ELiiXA-3V 規格表.............................................................20
表3-2 Makro-Planar 2/50規格表....................................................21
表3-3 MISUMI LX20規格表.........................................................24
表3-4 DLP規格表........................................................................25
表4-1重複度量測實驗..................................................................30

1.Godhwani, Arjun, Gulab H. Bhatia, Michael W. Vannier. "Calibration of a multisensor structured light range scanner." Optical Engineering 33.4 , pp.1359-1367, 1994.
2.Malacara, Daniel, Optical shop testing. Vol. 59. John Wiley &; Sons, 2007.
3.Zhang, Ji-hua, Lilong Cai. "An autofocusing measurement system with a piezoelectric translator." Mechatronics, IEEE/ASME Transactions on 2.3, pp.213-216, 1997.
4.Bickel, G., G. Hausler, M. Maul. "Triangulation with expanded range of depth." Optical Engineering 24.6, pp.246975-246975, 1985.
5.Wegdam, Alfons MF, O. Podzimek, E. C. M. Verhoeven. "Projection moiré fringe pattern prediction using the optical transfer function in the presence of aberrations." Applied optics 31.34, pp.7348-7354, 1992.
6.Takasaki, Hiroshi. "Moiré topography." Applied optics 9.6, pp.1467-1472, 1970.
7.Vest, C. M., D. W. Sweeney. "Measurement of vibrational amplitude by modulation of projected fringes." Applied optics 11.2 , pp. 449-454, 1972.
8.Idesawa, Masanori, Toyohiko Yatagai, Takashi Soma. "Scanning moiré method and automatic measurement of 3-D shapes." Applied Optics 16.8 , pp. 2152-2162, 1977.

9.Perrin, J. C., A. Thomas. "Electronic processing of moire fringes: application to moire topography and comparison with photogrammetry." Applied optics 18.4, pp.563-574, 1979.
10.Ulrich, Franz, John Ma, Leonard H. Bieman. "Scanning Moire interferometry." Photonics East'99. International Society for Optics and Photonics, 1999.
11.Ulrich, Franz W., John Ma, Darcy J. Hart. "Binary optical grating and method for generating a moire pattern for 3D imaging." U.S. Patent No. 6, pp.509-559, 2003.
12.Schreiber, Horst, John H. Bruning. "Phase shifting interferometry." Optical Shop Testing, Third Edition , pp. 547-666, 2006.
13.Cheng, Yeou-Yen, James C. Wyant. "Phase shifter calibration in phase-shifting interferometry." Applied Optics 24.18 , pp. 3049-3052, 1985.
14.Hariharan, P. "Digital phase-stepping interferometry: effects of multiply reflected beams." Applied optics 26.13 , pp. 2506-2507, 1987.
15.Hariharan, P., B. F. Oreb, Tomoaki Eiju. "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm."Applied optics 26.13 , pp. 2504-2506, 1987.
16.Sasaki, Osami, Hirokazu Okazaki. "Analysis of measurement accuracy in sinusoidal phase modulating interferometry." Applied optics 25.18 , pp. 3152-3152, 1986.

17.李元裕,投射疊紋掃描量測技術研究, 私立中原大學機械工程研究所碩士論文, 2001.
18.Quan, C., "Shape measurement of small objects using LCD fringe projection with phase shifting." Optics Communications 189.1, pp.21-29, 2001.
19.Huang, Peisen S., Chengping Zhang, Fu-Pen Chiang. "High-speed 3-D shape measurement based on digital fringe projection." Optical Engineering42.1 , pp. 163-168, 2003.
20.謝佳玶, 藍寶石基板表面輪廓量測系統, 私立中原大學機械工程研究所碩士論文, 2013.
21.Kreis, Thomas. "Digital holographic interference-phase measurement using the Fourier-transform method." JOSA A 3.6 , pp. 847-855, 1986.
22.康新, 何小元. "两步相移實現投影光柵相位測量輪廓術."光學學報 23.1, pp.75-79, 2003.
23.Zhu, Yongjian, "Discussions about FFT-based two-step phase-shifting algorithm." Optik-International Journal for Light and Electron Optics 119.9 , pp. 424-428, 2008.
24.Zhu, Xinjun, Zhanqing Chen, Chen Tang. "Variational image decomposition for automatic background and noise removal of fringe patterns." Optics letters38.3 , pp. 275-277, 2013.
25.Schnars, Ulf, Werner PO Jüptner. "Digital recording and numerical reconstruction of holograms." Measurement science and technology 13.9 , pp. 85, 2002.

26.Schnars, Ulf, Thomas M. Kreis, Werner PO Ju. "Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum." Optical Engineering 35.4 , pp. 977-982, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top