跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭鑫
研究生(外文):Hsin Cheng
論文名稱:金/銅凸塊氮化矽層破裂與Sn-xAg銅柱凸塊剪力之分析研究
論文名稱(外文):Simulation for Passivation Si3N4 Crack in Au/Cu Bump Process and Shear Force Analysis Between Sn-xAg/Copper Pillar Interface
指導教授:何青原
指導教授(外文):Ching-Yuan Ho
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:96
中文關鍵詞:氮化矽銅柱凸塊熱應力
外文關鍵詞:Silicon nitrideCopper pillarThermal stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究共分為兩大項,第一項針對封裝製程中氮化矽層之應力分佈進行分析,主要模型為RDL(Re-distribution line)、Non-bump on array (Non-BOA)、Bump on array (BOA)、Al-Pad Slot四種不同結構之模型,搭配不同的退火溫度、凸塊高度、導角型式等分析條件,模擬封裝結構經過製程流程後之殘留應力(Residual Stress)分佈情形與最大應力點,並分析損壞位置,第二項研究針對銅柱凸塊與不同錫銀比例的銲料在不同迴銲次數後,產生不同厚度的金屬間化合物層,進行推球分析,並以實驗對照模擬分析結果,找出不同迴銲溫度與不同錫銀銲料比例下,對於整體強度之關係,透過此兩大項分析,找出個別主導因素以及最佳製程條件。
本論文之模擬分析結果,可觀察到氮化矽層分析中,凸塊的高度、退火溫度對於封裝體的失效影響最為顯著,降低凸塊高度可節省封裝成本及降低凸塊膨脹量,降低退火溫度可減少封裝體產生過大膨脹收縮量,當凸塊高度為9μm以及退火溫度245℃,此條件可視為封裝結構較佳的製程參數,銅柱凸塊分析中,結構強度主要影響因素為迴銲次數,迴銲五次之銅柱凸塊,擁有最好的抗剪能力。


The study has two subjects, one subject focuses on the thermal stress of wafer level chip scale package subjected to Si3N4 Cracking for the Au/Cu Bumping Process. The finite element analysis (FEA) method is used to simulate its mechanical behavior and material condition. According to the Residual Stress behavior which calculates the package’s failing situation is considered as the reliability of the whole package. The second subject for Sear Force Analysis Between Sn-xAg/Copper Pillar Interface. This analysis shows the effect of different reflow temperature and different tin-silver ratio on solder strength.
Four Si3N4 Cracking models – RDL (Re-distribution line), Non-bump on array (Non-BOA), Bump on array (BOA), and Al-Pad Slot are included to simulate the treatise and calculate the Residual Stress of difference annealing temperature, bump height, and chamfering-type after annealing process.
Throughout fully investigation, the Si3N4 Cracking simulation result shows that lower bump height and lower annealing temperature can be regarded as optimal solution. From the Copper Pillar simulation result, reflow 5X copper pillar has the best shear capacity.


目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 氮化矽層破裂 1
1.2 晶圓級構裝 3
1.3 重新分配電路製程 3
1.4 錫銀無鉛銲料 5
1.5 銅柱凸塊 7
1.6 金屬間化合物 9
1.7 推球測試 12
1.8 研究目的與動機 13
1.9 文獻回顧 14
第二章 理論基礎 17
2.1 有限元素分析 17
2.2 線性分析與非線性分析 18
2.2.1 線性分析 18
2.2.2 非線性分析 19
2.3 耦合場分析的定義 20
2.4 耦合場分析的類型 20
2.4.1 順序耦合分析法 20
2.4.2 直接耦合分析法 21
2.5 應力與應變 22
2.6 熱應力分析 24
第三章 研究方法及步驟 26
3.1 材料參數 26
3.2 模型尺寸與模擬條件參數 27
3.2.1 RDL模型尺寸與分析條件 27
3.2.2 Non-BOA模型尺寸與分析條件 32
3.2.3 Bump on array (BOA) 模型尺寸與分析條件 36
3.2.4 Al-Pad Slot模型尺寸與分析條件 38
3.2.5 銅柱凸塊模型尺寸與分析條件 41
3.3 模型邊界條件 43
3.3.1 RDL邊界條件 43
3.3.2 Non-BOA凸塊邊界條件 44
3.3.3 BOA凸塊邊界條件 44
3.3.4 Al-Pad Slot邊界條件 45
3.3.5 銅柱凸塊邊界條件 45
3.4 模擬製程參數 46
3.4.1 銅凸塊模擬製程流程 46
3.4.2 金凸塊模擬製程流程 47
3.4.3 銅柱凸塊模擬製程流程 48
第四章 結果與討論 49
4.1 RDL模擬結果 49
4.1.1 U-Shape 銅凸塊模擬結果 49
4.1.2 Pyramid-Shape銅凸塊模擬結果 51
4.1.3 Block-Shape銅凸塊模擬結果 53
4.2 Non-BOA模擬結果 55
4.2.1 Non-BOA 銅凸塊模擬結果 55
4.2.2 Non-BOA 金凸塊模擬結果 60
4.3 Bump on array (BOA)模擬結果 65
4.3.1 BOA銅凸塊模擬結果 65
4.3.2 BOA金凸塊模擬結果 68
4.4 Al-Pad Slot模擬結果 71
4.5 銅柱凸塊模擬結果與實驗驗證 73
4.5.1 銅柱凸塊熱應力模擬結果 73
4.5.2 銅柱凸塊推球模擬與實驗驗證 75
第五章 結論 78
參考文獻 80

圖目錄
圖1-1 無鋁線陣列凸塊破裂位置 2
圖1-2 鋁線陣列凸塊破裂位置 2
圖1-3 重分佈電路製程示意圖 4
圖1-4 重分佈電路製程光學顯微鏡上視圖[2] 4
圖1-5 Sn-Ag 二元合金相圖 7
圖1-6 銅柱凸塊電子顯微鏡影像 8
圖1-7 金屬間化合物與3種失效模式[14] 10
圖1-8 IMC生長機制 11
圖1-9 推球測試機 12
圖1-10 推球位置示意圖 12
圖2-1 線性結構負載與反應 19
圖2-2 非線性結構分析[48] 19
圖2-3 順序耦合分析法 21
圖2-4 直接耦合分析法 22
圖3-1 RDL之材料與厚度剖面圖 27
圖3-2 U-Shape示意圖 28
圖3-3 Block Shape示意圖 29
圖3-4 Pyramid Shape示意圖 30
圖3-5 Non-BOA無導角示意圖 32
圖3-6 Non-BOA導斜角示意圖 33
圖3-7 Non-BOA之材料與厚度剖面圖 33
圖3-8 Non-BOA無導角示意圖 34
圖3-9 Non-BOA導斜角示意圖 35
圖3-10 Non-BOA之材料與厚度剖面圖 35
圖3-11 BOA上視尺寸圖 36
圖3-12 BOA側視尺寸圖 36
圖3-13 BOA上視尺寸圖 37
圖3-14 BOA側視尺寸圖 37
圖3-15 Al-Pad Slot模擬模型之上視圖與剖面圖 38
圖3-16 Al-Pad Slot分析凸塊區域之剖面圖與厚度參數 38
圖3-17 銅柱凸塊迴銲IMC介面影像 41
圖3-18 銅柱凸塊迴銲IMC厚度 42
圖3-19 銅柱凸塊側視尺寸圖 42
圖3-20 銅柱凸塊推球分析模型尺寸圖 43
圖3-21 Pyramid-Shape邊界條件 43
圖3-22 Non-BOA凸塊邊界條件 44
圖3-23 BOA凸塊邊界條件 44
圖3-24 Al-Pad Slot邊界條件 45
圖3-25 銅柱凸塊邊界條件 45
圖3-26 銅凸塊模擬製程參數 46
圖3-27 金凸塊模擬製程參數 47
圖3-28 銅柱凸塊製程流程 48
圖3-29 銅柱凸塊模擬製程參數 48
圖4-1 U-Shape第一主應力分佈圖 (退火後) 49
圖4-2 U-Shape銅凸塊應力比較圖 (退火後) 50
圖4-3 Pyramid-Shape第一主應力分佈圖 (退火後) 51
圖4-4 Pyramid-Shape 銅凸塊應力比較圖 (退火後) 52
圖4-5 Block-Shape第一主應力分佈圖 (退火後) 53
圖4-6 Block-Shape 銅凸塊應力比較圖 (退火後) 54
圖4-7 Non-BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊寬=30 μm) 55
圖4-8 Non-BOA銅凸塊第一主應力分佈圖 (退火後,凸塊寬=70 μm) 56
圖4-9 Non-BOA銅凸塊第一主應力分佈圖 (退火後,凸塊寬=100 μm) 56
圖4-10 Non-BOA 銅凸塊尺寸-應力比較圖 (退火後) 57
圖4-11 Non-BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊高=9μm) 58
圖4-12 Non-BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊高=18μm) 58
圖4-13 Non-BOA 銅凸塊應力比較圖 (退火後) 59
圖4-14 Non-BOA 銅凸塊製程應力比較圖 59
圖4-15 Non-BOA 金凸塊第一主應力分佈圖 (退火後,凸塊寬=30 μm) 60
圖4-16 Non-BOA 金凸塊第一主應力分佈圖 (退火後,凸塊寬=70 μm) 61
圖4-17 Non-BOA 金凸塊第一主應力分佈圖 (退火後,凸塊寬=100 μm) 61
圖4-18 Non-BOA 金凸塊凸塊尺寸-應力比較圖 (退火後) 62
圖4-19 Non-BOA 金凸塊第一主應力分佈圖 (退火後,凸塊高=9μm) 63
圖4-20 Non-BOA 金凸塊第一主應力分佈圖 (退火後,凸塊高=18μm) 63
圖4-21 Non-BOA 金凸塊應力比較圖 (退火後) 64
圖4-22 Non-BOA 金凸塊製程應力比較圖 64
圖4-23 BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊高=9μm) 65
圖4-24 BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊高=13μm) 66
圖4-25 BOA 銅凸塊第一主應力分佈圖 (退火後,凸塊高=18μm) 66
圖4-26 BOA 銅凸塊第一主應力分佈圖橫截面 (退火後,凸塊高=13μm) 67
圖4-27 BOA 銅凸塊應力比較圖 (退火後) 67
圖4-28 BOA 金凸塊第一主應力分佈圖 (退火後,凸塊高=9μm) 68
圖4-29 BOA 金凸塊第一主應力分佈圖 (退火後,凸塊高=13μm) 69
圖4-30 BOA 金凸塊第一主應力分佈圖 (退火後,凸塊高=18μm) 69
圖4-31 BOA 金凸塊第一主應力分佈圖橫截面 (退火後,凸塊高=13μm) 70
圖4-32 BOA 金凸塊應力比較圖 (退火後) 70
圖4-33 One-Slot與Two-Slot對於Non-Slot之第一主應力比較 72
圖4-34 I-Slot對於Non-Slot之第一主應力比較 72
圖4-35 銅柱凸塊製程熱應力 73
圖4-36 銅柱凸塊不同錫銀比例熱應力 74
圖4-37 銅柱凸塊應力分佈圖 74
圖4-38 推球分析 模擬解-實驗解對照圖 75
圖4-39 銅柱凸塊推球實驗結果 76
圖4-40 推球分析 模擬-實驗斷面應力分佈 76
圖4-41 推球實驗斷面元素分析 77

表目錄
表3-1 材料參數表 27
表3-2 U-Shape導角型式 28
表3-3 Block -Shape導角型式 29
表3-4 Pyramid -Shape導角型式 30
表3-5 Pyramid Shape線長尺寸表 31
表3-6 Slot型式與尺寸示意圖 39
表3-7 Slot型式與尺寸條件表 40
表4-1 U-Shape 銅凸塊各項應力比較表 50
表4-2 Pyramid-Shape銅凸塊各項應力比較表 52
表4-3 Block-Shape銅凸塊各項應力比較表 54
表4-4 Al-Pad Slot氮化層之應力分佈圖 71
表4-5 應力變化因素比較表 79



[1]許明哲, “先進微電子3D-IC構裝,” 五南圖書出版社, 2011
[2]C. Qinghu, S. Xin, Z. Yunhui, M. Shenglin, C. Jing, M. Min, et al., “Design and optimization of redistribution layer (RDL) on TSV interposer for high frequency applications, ” in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference , pp.1-5, 2011
[3]N.C. Lee, “Getting Ready for Lead-free Solder,” Soldering & Surface Mount Technology, vol. 9, pp. 65-69, 1997
[4]M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering R-reports, vol.27, pp.95-141, 2000
[5]S. Choi, J. Lee, F. Guo, T. Bieler, K. Subramanian, and J. Lucas, “Creep Properties of Sn-Ag solder Joints Containing Intermetallic Particles,” Journal of the Minerals Metals and Materials Society, vol.53,pp.22-26 , 2001
[6]S. Kim and J. Yu, “Effects of Ag on the Kirkendall void formation of Sn-xAg/Cu solder joints,” Journal of Applied Physics, vol. 108, pp.083532, 2010
[7]W. Yang, R. W. Messler, and L. E. Felton, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, vol.23, pp.765-772, 1994
[8]K. Kim, S. Huh, and K. Suganuma,“Effect of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,”Materials Science and Engineering A, vol.333, pp.106-114, 2002
[9]K. Suganuma, S.-H. Huh, K. Kim, H. Nakase, and Y. Nakamura, “Innovative Solidification Processing for Advanced materials. Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder,”Materials transactions, vol. 42, pp. 286-291, 2001
[10]K.Suganuma,“Interface Phenomena in Lead-free Soldering,” Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign''99: First International Symposium, pp.620-625, 1999
[11]S. Choi, J.G. Lee, F. Guo, T.R. Bieler, K. N. Subramanian, and J. P. Lucas, “Creep Properties of Sn-Ag Solder Joints Containing Intermetallic Particles,” Journal of the Minerals Metals and Materials Society, vol.53, pp.22-26, 2001
[12]J. Parent, D. Chung, and I. Bernstein,“Effects of Intermetallic Formation at the Interface between Copper and Lead-Tin Solder,” Journal of Materials Science, vol.23, pp.2564-2572, 1988
[13]P.G. Harris and K.S. Chaggar, “The Role of Intermetallic Compounds in Lead-Free Soldering,” Soldering and Surface Mount Technology, vol.10, pp.33-38, 1998
[14]T. An and F. Qin, “Cracking of the Intermetallic Compound Layer in Solder Joints Under Drop Impact Loading,” Journal of Electronic Packaging, vol.133, pp. 031004, 2011
[15]C. Yu, Y. Yang, J. Chen, J. Xu, J. Chen, and H. Lu, “Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints,” Materials Letters, vol. 128, pp. 9-11, 2014
[16]M. M. Arshad, A. Jalar, and I. Ahmad, “Characterization of parasitic residual deposition on passivation layer in electroless nickel immersion gold process,” Microelectronics Reliability, vol. 47, pp. 1120-1126, 2007
[17]Y. T. He, H. P. Li, R. Shi, F. Li, G. Zhang, and L. Ernst, “Passivation Cracking Analyses of Micro-structures of IC Packages,” Key Engineering Materials , vol. 324-325 , pp. 515-518, 2006
[18]R. van Silfhout, W. van Driel, Y. Li, M. van Gils, J. Janssen, G. Zhang, et al., “Effect of Metal Layout Design on Passivation Crack Occurrence using both Experimental and Simulation Techniques,” Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp.69-74, 2004
[19]Y. He, H. Li, F. Li, L. Wang, G. Zhang, and L. Ernst, “Effects of Aeronautical Conditions on Passivation Cracking of Micro-Structures of IC Packages,” Thermal Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-4, 2006
[20]Y. He, H. Li, F. Li, R. Shi, G. Zhang, and L. Ernst, “Passivation Cracking Analyses of ICs for Different Fixing Position under the Aeronautical Working Conditions,” Electronic Packaging Technology, 2006. ICEPT ''06. 7th International Conference, pp. 1-5, 2006
[21]X. Zhang, “Discussions on the Failure Mode and Criterion of Passivation Cracks,” Electronics Manufacturing and Technology, 31st International Conference, pp. 248-252, 2006
[22]B. A. Zahn, “Comprehensive Solder Fatigue and Thermal Characterization of a Silicon Based Multi-Chip Module Package Utilizing Finite Element Analysis Methodologies,” Proceedings of the 9th International ANSYS Conference and Exhibition, pp. 1-15, 2000
[23]S. F. Al-Sarawi, D. Abbott, and P. D. Franzon, “A Review of 3-D Packaging Technology,” IEEE transactions on components, packaging, and manufacturing technology-part B, vol. 21, pp. 2-14, 1998
[24]R. S. Patti, “Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs,” Proceedings of the Institute of Electrical and Electronic Engineers, vol. 94, pp. 1214-1224, 2006
[25]A. T. Huang, A. Gusak, K. Tu, and Y.-S. Lai, “Thermomigration in SnPb composite flip chip solder joints,” Applied Physical Letters, vol.88, pp.141911, 2006
[26]H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing,” Applied Physical Letters, vol. 82, pp. 1045-1047, 2003
[27]H.Y. Hsiao and C. Chen, “Thermomigration in Pb-Free SnAg Solder Joint Under Alternating Current Stressing,” Applied Physical Letters, vol.94, pp. 092107, 2009
[28]H.Y. Chen, C. Chen, and K. N. Tu, “Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints,” Applied Physical Letters, vol. 93, pp. 122103-122105, 2008
[29]H. Y. Chen, H. W. Lin, C. M. Liu, Y. W. Chang, A. T. Huang, and C. Chen, “Thermomigration of Ti in flip-chip solder joints,” Scripta Materialia, vol.66, pp. 694-697, 2012
[30]H. Y. Chen and C. Chen, “Thermomigration of Cu-Sn and Ni-Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints,” Journal of Materials Research, vol. 26, pp. 983-991, 2011
[31]T. Miyazaki and T. Omata, “Electromigration degradation mechanism for Pb-free flip-chip micro solder bumps,” Microelectronics Reliability, vol.46, pp. 1898-1903, 2006
[32]Y. Wang, K. H. Lu, J. Im, and P. S. Ho, “Reliability of Cu pillar bumps for flip-chip packages with ultra low-k dielectrics,” Electronic Components and Technology Conference, pp.1404-1410, 2010
[33]A. L. X. Jiang, L. C. Ming, J. C. Y. Gao, and T. K. Hwee, “Pillar Bump Technology and Integrated Embedded Passive Devices,” Electronic Packaging Technology, 2006. ICEPT ''06. 7th International Conference, pp.1-5, 2006
[34]T. Sakurai, “Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs,” Electron Devices, IEEE Transactions, vol.40, pp.118-124, 1993.
[35]Z. Wang, J. Wang, S. Lee, S. Yao, R. Han, and Y. Q. Su, “300-mm Low-k Wafer Dicing Saw Development,” Electronics Packaging Manufacturing, IEEE Transactions, vol. 30, pp. 313-319, 2007
[36]C. J. Uchibori, X. Zhang, P. S. Ho, and T. Nakamura, “Chip Package Interaction and mechanical reliability impact on Cu/ultra low-k interconnects in Flip Chip package,” Solid-State and Integrated-Circuit Technology, pp.1219-1222, 2008
[37]P.H. Tsao, B. Kiang, K. Wu, A. Chang, and T.D. Yuan, “Low-K Flip Chip Board Level Reliability on 65nm Technology,” Electronic Components and Technology Conference, pp.110-115, 2007
[38]M. W. Lee, J. Y. Kim, J. D. Kim, and C. H. Lee, “Below 45nm low-k layer stress minimization guide for high-performance flip-chip packages with copper pillar bumping,” Electronic Components and Technology Conference, pp.1623-1630, 2010
[39]K. Chen and T. Lin, “Copper pillar bump design optimization for lead free flip-chip packaging,” Journal of Materials Science: Materials in Electronics, vol. 21, pp. 278-284, 2010
[40]R. W. Clough, “The finite element method in plane stress analysis,” American Society of Civil Engineers, PA, pp. 345-378, 1960
[41]M.J. Turner, E.H. Dill, H.C. Martin and R.J. Melosh, “Large Deflections of Structures Subjected to Heating and External Loads,” Journal of the Aerospace Sciences, vol. 27, pp. 97-106, 1960
[42]R.H. Gallagher, “Stress Analysis of Heated Complex Shapes,” Journal of the American Rocket Society, vol. 32, pp. 700-707, 1962
[43]劉晉奇, 褚晴暉, “有限元素分析與ANSYS的工程應用,” 滄海書局, 2005
[44]B. Zhao, “Thermal stress analysis of ceramic-coated diesel engine pistons based on the wavelet finite-element method,” Journal of Engineering Mechanics, vol. 138, pp. 143-149, 2011
[45]V. Chawla, R. Jayaganthan, and R. Chandra, “Analysis of thermal stress in magnetron sputtered TiN coating by finite element method,” Materials Chemistry and Physics, vol. 114, pp. 290-294, 2009
[46]C. S. Zhang, R. Kallam, A. Deceuster, A. Dasu, and L. Li, “A thermal-mechanical coupled finite element model with experimental temperature verification for vertically stacked FPGAs,” Microelectronic Engineering, vol. 91, pp. 24-32, 2012
[47]李輝煌, “ANSYS工程分析基礎與觀念,” 高立圖書, 2009
[48]X. Chen and J. Yang, “Optimization of Longitudinal Beam for Improvement of Crashworthiness in Frontal and Offset Impacts,” Digital Manufacturing and Automation (ICDMA), 2012 Third International Conference, pp. 582-585, 2012
[49]黨沙沙, 許洋, 張紅松, “ANSYS 12.0多物理耦合場有限元分析從入門到精通,” 機械工業出版社, 2010
[50]ANSYS User’s Manual , ANSYS Inc
[51]江國寧, “微電子系統封裝基礎理論與應用技術,” 滄海書局, 2006


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top