(3.237.178.91) 您好!臺灣時間:2021/03/07 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉佩嫺
研究生(外文):Pei-Sian Liu
論文名稱:大分子有機物影響掃流式薄膜積垢指標之研究
論文名稱(外文):Effects of Macromolecules on Cross-Flow Membrane Fouling Index
指導教授:莊順興莊順興引用關係
指導教授(外文):Shun-Hsing Chuang
口試委員:張維欽張時獻王順成林宏嶽莊順興
口試委員(外文):Wei-Chin ChangShih-Hsien ChangShun-Cheng WangHung-Yueh LinShun-Hsing Chuang
口試日期:2015-01-23
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:160
中文關鍵詞:污泥密度指數修正積垢指數飽和曲線模式二級放流水大分子有機物
外文關鍵詞:Silt Density IndexModified Fouling IndexSaturation Curve Fouling IndexSecondary EffluentMacromolecules
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
全球面臨水資源逐漸缺乏與開發不易及水資源受到污染之問題,而薄膜技術能去除懸浮粒子到溶解性無機離子等多種水中雜質,因此,成為各國重視及探討的重要技術。且由於近年來國際上各先進國家均積極推動薄膜系統於水再生利用上之研究,其中以二級放流水作為原水進流至薄膜系統成為主軸。
二級放流水中之大分子有機性物質大部分來自生物處理系統之微生物產物,對於其所產生之殘留有機物(膠體與溶解行微生物產物,包含核酸、蛋白質及腐植酸等)所造成之有機性積垢,為探討薄膜積垢指標所需掌握之問題點。
一般常見判斷薄膜阻塞之情形的參數包括污泥密度指數( Silt Density Index , SDI)、修正積垢指數( Modify Fouling Index , MFI )、飽和曲線模式 ( Saturation Curve Fouling Index , SCFI ),搭配過濾比阻及標準化通量以判定薄膜積垢之情況。過濾方式一般可分為兩類型,為垂直式端點( Dead-End )過濾及掃流式( Cross-Flow )過濾,而實際工業應用薄膜過濾方式大多為掃流式過濾,目前並沒有一套掃流式過濾之標準操作方法以及程序用以評估薄膜積垢。
本研究進行掃流式薄膜積垢指標之建立與開發,設置自動控制設施及運算之掃流式薄膜積垢指標試驗模廠,以得精確之結果。針對大分子有機物質及二級處理放流水於實驗室進行連續式實驗以模擬探討其對積垢指標之影響,建立掃流式薄膜積垢指標之應用特性。同時,進行生物馴養放流水作為探討掃流式薄膜積垢指標之影響之材料。
研究結果顯示,使用腐植酸、68.5 k之葡聚糖、100~200 k之葡聚糖、5~40 million之葡聚糖、三種分子量葡聚糖之混合物以及蛋白質等大分子有機物與生物放流水經掃流式過濾裝置,搭配過濾比阻及標準化通量於SDI、MFI及SCFI三種指標下,由增率及減率可得知其對薄膜之實際積垢程度,以不影響薄膜積垢之建議進流濃度:腐植酸為0.1 mg/L、68.5 k之葡聚糖為8 mg/L、100~200 k之葡聚糖為25 mg/L、5~40 million之葡聚糖為0.05 mg/L、蛋白質為2 mg/L及放流水稀釋倍數應高於60倍。
由於不同分子量之葡聚糖實驗中,以分子量5~40 million與腐植酸、蛋白質及放流水有相同之積垢趨勢,故僅以此分子量與其他污染物進行比較:稀釋倍數50~150倍之生物放流水>0.01~0.1 mg/L 5~40 million之葡聚糖>0.01~0.5 mg/L之腐植酸>0.5~4 mg/L之蛋白質。
綜合比較以上結果,污染物於薄膜上之積垢情況,判別指標之精確度由大至小排列為:飽和曲線分析(SCFI)>修正積垢指數(MFI)>淤泥密度指數(SDI)。

The world is confronted with water resource insufficiency and water pollution. As the membrane technology can remove multiple impurities in water, including suspended particles to soluble inorganic ions, it has become an important technology regarded and discussed by various countries. In recent years, advanced countries have promoted the research on the membrane system for water recycling actively, the flow of secondary effluent as raw water into the membrane system has become the topical subject.
Most of macromolecular organic materials in the secondary effluent are from the microbiological products of biological treatment system. The organic fouling caused by residual organic matter (colloid and soluble microbiological products, including nucleic acid, protein and humic acid) is the point that must be mastered for discussing membrane fouling index.
Common parameters for judging membrane fouling include Silt Density Index (SDI), Modify Fouling Index (MFI) and Saturation Curve Fouling Index (SCFI), combined with specific filtration resistance and normalized water flux to determine the membrane fouling. The filter types include Dead-End filtration and Cross-Flow filtration. The membrane filtration for practical industry is mostly Cross-Flow filtration, there is not yet a standard operating method and procedure of Cross-Flow filtration for evaluating membrane fouling.
This study developed Cross-Flow membrane fouling index, a Cross-Flow membrane fouling index experimental equipment controlling facilities and calculation automatically, so as to obtain accurate results. The macromolecular organic substances and secondary treatment effluent were tested continuously to discuss the effect on fouling index. The application characteristic of Cross-Flow membrane fouling index was developed. Meanwhile, biological domestication effluent was used as the material for discussing the effect of Cross-Flow membrane fouling index.
The results showed that three molecular weights of dextran, 68.5 k dextran, 100~200 k dextran and 5~40 million dextran and the mixture of humic acid and macromolecular organic matter including protein and biological effluent flow through the Cross-Flow filtration unit, combined with specific filtration resistance and normalized water flux under SDI, MFI and SCFI. The actual fouling of the membrane can be known from the increment rate and decrement rate, not influencing the recommended inlet concentration of membrane fouling: humic acid is 0.1 mg/L, 68.5 k dextran is 8 mg/L, 100~200k dextran is 25 mg/L, 5~40 million dextran is 0.05 mg/L, protein is 2 mg/L and the effluent dilution ratio shall be higher than 60 times.
In the experiments on different molecular weights of dextran, the 5~40 million molecular weight and humic acid, protein and biological effluent have the same fouling trend, so this molecular weight is compared with other contaminants, the descending order of fouling degree is 50~150 of dilution ratio biological effluent >0.01~0.1 mg/L 5~40 million dextran > 0.01~0.5 mg/L humic acid >0.5~4 mg/L protein.
Based on the results, for the fouling of contaminants on membrane, the descending order of accuracy of discrimination indexes is SCFI > MFI > SDI.

目錄
摘要 I
ABSTRACT III
致謝 V
總目錄 VI
表目錄 X
圖目錄 XII
第一章、前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 3
第二章、文獻回顧 4
2.1 薄膜技術 4
2.1.1 薄膜種類 4
2.1.2 薄膜過濾方式 6
2.1.3 薄膜材質 7
2.1.4 影響薄膜操作因素 11
2.1.5薄膜積垢類型 15
2.2 過濾原理 20
2.3 積垢指標 22
2.3.1 淤泥密度指數 (Silt density index,SDI) 22
2.3.2 修正阻塞指數 (Modified Fouling Index,MFI) 27
2.3.3 微阻塞指數 (Mini Plugging Factor Index,MPFI) 30
2.3.4 飽和模式指數( Saturation Curve Fouling Index , SCFI ) 32
2.4 水體中有機物概述 33
2.4.1大分子有機物基本性質 35
2.5.1 溶解性微生物產物之定義 38
2.5.2 溶解性微生物產物之分類 39
2.5.3 溶解性微生物產物之特性 40
第三章、研究方法與設備 43
3.1研究方法 43
3.1.1 研究架構 43
3.1.2 實驗設計 45
3.2 實驗設備 48
3.2.1 掃流式積垢指標評估設備 48
3.2.2 實驗材料 51
3.3 積垢指標計算方法 55
3.4 檢測設備及分析方法 61
第四章、結果與討論 63
4.1腐植酸 63
4.1.1腐植酸對掃流式積垢指標SDI之影響 63
4.1.2腐植酸對掃流式積垢指標MFI之影響 66
4.1.3腐植酸影響掃流式積垢指標之飽和曲線分析 68
4.1.4腐植酸之過濾比阻分析 70
4.1.5腐植酸之標準化通量分析 71
4.1.6腐植酸對掃流式積垢指標綜合討論 72
4.2葡聚糖 73
4.2.1葡聚糖對掃流式積垢指標SDI之影響 73
4.2.2葡聚糖對掃流式積垢指標MFI之影響 83
4.2.3影響掃流式積垢指標之飽和曲線分析 91
4.2.4葡聚糖之過濾比阻分析 103
4.2.5葡聚糖之標準化通量分析 106
4.2.6葡聚糖對掃流式積垢指標綜合討論 109
4.3蛋白質 110
4.3.1蛋白質對掃流式積垢指標SDI之影響 110
4.3.2蛋白質對掃流式積垢指標MFI之影響 112
4.3.3蛋白質影響掃流式積垢指標之飽和曲線分析 114
4.3.4蛋白質之過濾比阻分析 117
4.3.5蛋白質之標準化通量分析 118
4.3.6蛋白質對掃流式積垢指標綜合討論 119
4.4生物處理放流水 120
4.4.1生物處理放流水對掃流式積垢指標SDI之影響 120
4.4.2生物處理放流水對掃流式積垢指標MFI之影響 123
4.4.3生物處理放流水影響掃流式積垢指標之飽和曲線分析 125
4.4.4生物處理放流水之過濾比阻分析 128
4.4.5生物處理放流水之標準化通量分析 130
4.6.6生物放流水對掃流式積垢指標綜合討論 131
4.5綜合討論 132
第五章、結論與建議 133
5.1結論 133
5.2建議 134
參考文獻 135
附錄1 掃流式自動化設備操作流程 144
附錄2 MFI 原始數據 145
附錄3 SCFI 原始數據 153
表目錄
表2.1薄膜材質特性 10
表2.2各阻塞參數之限值 24
表3.1大分子有機物之實驗規劃表 45
表3.2生物處理放流水之實驗規劃表 47
表3.3人工調配合成基質主要成分 53
表3.4每日監測水質 53
表3.5本研究相關分析項目與方法 62
表4.1不同濃度腐植酸溶液之掃流式SDI15值及濁度 65
表4.2不同濃度腐植酸溶液之掃流式MFI值 67
表4.3不同濃度腐植酸溶液之掃流式SCFI值 68
表4.4不同濃度葡聚糖分子量68.5 k溶液之掃流式SDI15值及濁度 75
表4.5不同濃度葡聚糖分子量100-200 k溶液之掃流式SDI15值及濁度 77
表4.6不同濃度葡聚糖分子量5-40 million溶液之掃流式SDI15值及濁度 80
表4.7不同濃度葡聚糖混合分子量溶液之掃流式SDI15值及濁度 82
表4.8不同濃度葡聚糖分子量68.5 k溶液之掃流式MFI值及斜率 84
表4.9不同濃度葡聚糖分子量100~200 k溶液之掃流式MFI值及斜率 86
表4.10不同濃度葡聚糖分子量5-40 million溶液之掃流式MFI值及斜率 88
表4.11不同濃度葡聚糖混合分子量溶液之掃流式MFI值及斜率 90
表4.12不同濃度葡聚糖分子量68.5 k溶液之掃流式SCFI值 92
表4.13不同濃度葡聚糖分子量100~200 k溶液之掃流式SCFI值 95
表4.14不同濃度葡聚糖分子量5-40 million溶液之掃流式SCFI值 98
表4.15不同濃度葡聚糖混合分子量溶液之之掃流式SCFI值 101
表4.16不同濃度蛋白質溶液之掃流式SDI15值及濁度 111
表4.17不同濃度蛋白質溶液之掃流式MFI值及斜率 113
表4.18不同濃度蛋白質溶液之之掃流式SCFI值 115
表4.19不同稀釋倍數生物處理放流水溶液之掃流式SDI15值、TOC及濁度 121
表4.20不同稀釋倍數生物處理放流水之掃流式MFI值及斜率 124 
圖目錄
圖2.1各孔徑薄膜對物質分離範圍 5
圖2.2(a)為掃流過濾示意圖(b)則說明過濾速度和時間之關係圖 7
圖2.3醋酸纖維膜 (Cellulose acetate, CA)化學結構式 8
圖2.4聚醯胺鹽 (Polyamide, PA)化學結構式 8
圖2.5聚磺酸鹽 (Polysulfone, PS)化學結構 9
圖2.6薄膜複合膜 (Thin-Film Composite, TFC)化學結構式 10
圖2.7積垢影響及進流水前處理目的 12
圖2.8(a) 均勻的小顆粒及 (b) 大小顆粒混合組成結構的濾餅層 16
圖2.9薄膜積垢模式 (a) 完全阻塞 (b) 標準阻塞(c) 膠羽層/濾餅層阻塞 18
圖2.10薄膜積垢形成之概要圖 19
圖2.11濾餅之組成與質量平衡圖 21
圖2.12 SDI 與 %P 與累積阻塞沉澱物的關係圖 26
圖2.13(a) 由 t/v 與 v 曲線計算出 tgα (b) 積垢指數 I 曲線 28
圖2.14 MFI之曲線圖 30
圖2.15 MPFI 之曲線圖 31
圖2.16 腐植酸之化學結構式 34
圖2.17 葡聚糖之化學結構式 36
圖2.18 蛋白質之化學結構式 37
圖2.19 磷脂質之化學結構式 38
圖3.1研究架構 44
圖3.2掃流式積垢指標評估之設備 49
圖3.3掃流式積垢指標評估設備示意圖 50
圖3.4生物處理程序污泥馴養每日操作模式 51
圖3.5反應槽設備示意圖 52
圖3.6 SBR生物處理程序MLSS及SV30 54
圖3.7 SDI 分析圖 56
圖3.8過濾曲線 MFI 示意圖 58
圖3.9飽和曲線指數之示意圖 59
圖3.10飽和曲線指數之範例圖 60
圖4.1不同濃度腐植酸溶液之掃流式SDI15變化圖 65
圖4.2不同濃度腐植酸溶液之掃流式MFI變化圖 67
圖4.3不同濃度腐植酸溶液之掃流式SCFI-Vmax變化圖 69
圖4.4不同濃度腐植酸溶液之掃流式SCFI-Kf值變化圖 69
圖4.5不同濃度腐植酸溶液之掃流式過濾比阻 70
圖4.6腐植酸各濃度對掃流式之標準化通量 71
圖4.7不同濃度葡聚糖分子量68.5 k溶液之掃流式SDI15變化圖 75
圖4.8不同濃度葡聚糖分子量100~200 k溶液之掃流式SDI15變化圖 77
圖4.9不同濃度葡聚糖分子量5-40 million溶液之掃流式SDI15變化圖 80
圖4.10不同濃度葡聚糖混合分子量溶液之掃流式SDI15變化圖 82
圖4.11不同濃度葡聚糖分子量68.5 k溶液之掃流式MFI變化圖 84
圖4.12不同濃度葡聚糖分子量100~200 k溶液之掃流式MFI變化圖 86
圖4.13不同濃度葡聚糖分子量5-40 million溶液之掃流式MFI變化圖 88
圖4.14不同濃度葡聚糖混合分子量溶液之掃流式MFI變化圖 90
圖4.15不同濃度葡聚糖分子量68.5 k溶液之掃流式SCFI-Vmax變化圖 93
圖4.16不同濃度葡聚糖分子量68.5 k溶液之掃流式SCFI-Kf變化圖 93
圖4.17不同濃度葡聚糖分子量100~200 k溶液之掃流式SCFI-Vmax變化圖 96
圖4.18不同濃度葡聚糖分子量100~200 k溶液之掃流式SCFI-Kf變化圖 96
圖4.19不同濃度葡聚糖分子量5-40 million溶液之掃流式SCFI-Vmax變化圖 99
圖4.20不同濃度葡聚糖分子量5-40 million 溶液之掃流式SCFI-Kf變化圖 99
圖4.21不同濃度葡聚糖混合分子量溶液之掃流式SCFI-Vmax變化圖 102
圖4.22不同濃度葡聚糖混合分子量溶液之掃流式SCFI-Kf變化圖 102
圖4.23不同濃度葡聚糖分子量68.5 k溶液之掃流式之過濾比阻 104
圖4.24不同濃度葡聚糖分子量100~200 k溶液之掃流式之過濾比阻 104
圖4.25不同濃度葡聚糖分子量5-40 million 溶液之掃流式之過濾比阻 105
圖4.26不同濃度葡聚糖混合分子量溶液之掃流式之過濾比阻 105
圖4.27不同濃度葡聚糖分子量68.5 k溶液之掃流式之標準化通量 107
圖4.28不同濃度葡聚糖分子量100~200 k溶液之掃流式之標準化通量 107
圖4.29不同濃度葡聚糖分子量5-40 million 溶液之掃流式之標準化通量 108
圖4.30不同濃度葡聚糖混合分子量溶液之掃流式之標準化通量 108
圖4.31不同濃度蛋白質溶液之掃流式SDI15變化圖 111
圖4.32不同濃度蛋白質溶液之掃流式MFI變化圖 113
圖4.33不同濃度蛋白質溶液之掃流式SCFI-Vmax變化圖 116
圖4.34不同濃度蛋白質溶液之掃流式SCFI-Kf變化圖 116
圖4.35不同濃度蛋白質溶液之掃流式之過濾比阻 117
圖4.36不同濃度蛋白質溶液之掃流式之標準化通量 118
圖4.37不同稀釋倍數生物處理放流水溶液之掃流式SDI15變化圖 122
圖4.38不同稀釋倍數生物處理放流水之掃流式MFI變化圖 124
圖4.39不同稀釋倍數生物處理放流水之掃流式SCFI-Vmax變化圖 127
圖4.40不同稀釋倍數生物處理放流水之掃流式SCFI-Kf變化圖 127
圖4.41不同稀釋倍數生物處理放流水溶液之掃流式之過濾比阻 129
圖4.42不同稀釋倍數生物處理放流水溶液之掃流式之標準化通量 130




1. Allison, R.P., “Electrodialysis reversal in water reuse applications,”
Desalination, 103(1-2), pp.11-18(1995).
2. ASTM Standard (D 4189-07), Standard Test Method for Silt Density Index (SDI) of Water, D19.08 on Membranes and Ion Exchange Materials, 2007.
3. Bae, T.H., Tak, T.M., “Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor,” J. Membr. Sci, Vol. 264, pp.151-160(2005).
4. Barker, D. J., and D. C. Stuckey, “A review of soluble microbial products (SMP) in wastewater treatment systems,” Water Research, Vol.33, pp.3063-3082(1999).
5. Boerlage, S.F.E., Kennedy, M.D., Aniye, M.P., Abogrean, E. Tarawneh, Z.S., Schippers, J.C., “The MFI-UF as a water quality test and monitor,” J. Membr. Sci, Vol. 211, pp.271-289(2003).
6. Bowen, W.R., Calvo, J.I., Hernandez, A., “Steps of membrane blocking in flux decline during protein microfiltration,” Journal of Membrane Science, Vol. 101(1-2), pp.153-165(1995).
7. Boero, V. J., E. J. W. W., and Bowers A. R., “Molecular weight distribution of soluble microbical products in biological system,” Water Science and Technology, Vol. 34, pp.241-248(1996).
8. Boerlage, Siobhan F.E.; Kennedy, Maria D.; Bonne, Paul A.C.; Galjaard, Gilbert; Schippers, Jan C, ”Prediction of flux decline in membrane systems due to particulate fouling,” Desalination, Vol. 113, pp.231-233(1997).
9. Cheryan, M., “Ultrafiltration and Microfiltration Handbook,” Technomic publish Co, pp. 46(1998).
10. Chiou, C. T., Malcolm, R. L., Birnton, T. I. and Kile, D.E.,“ Water solubulity enhancement of some organic pollutants and pesticises by dissolved humic and fulvic acids,” Envion. Sci. Technol. Vol. 20, pp.502-508 (1986).
11. Chong, T.H., Wong, F.S., Fane, A.G., “Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: experimental observations,” J. Membr. Sci, Vol. 314, pp.101-111(2008).
12. Chuang, S.H., Chang, W.C., Chang, M.C., Sung, M.A., “The effects of soluble organic matters on membrane fouling index,” Bioresour. Technol, Vol. 100, pp. 1875-1877(2009).
13. Comstock, Daniel, “Testing the Membrane Plugging Factor in Reverse Osmosis,” J.AWWA, Research and Technology, Sept, pp.486-490(1982).
14. Danis, Ü., Keskinler, B., “Chromate removal from wastewater using micellar enhanced crossflow filtration: effect of transmembrane pressure and crossflow velocity,” Desalination, Vol. 249, pp.1356-1364(2009).
15. Dong, B., and S. Jiang, “Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times,” Desalination, Vol. 243, pp.240-250(2009).
16. Eckenfelder Jr, W. W., “Point toxics control for industrial wastewaters,” Civil engineering, 3, pp.98-112(1988).
17. Gaffney P. E. and Heukelekian H, “Biochemical oxidation of the lower fatty acids,” J. WPCF 11, pp.1169-1184(1961).
18. Gareth, M. E., and C. F. Judith, “Environmental Biotechnology Principles and Applications,” (2003).
19. Gustafsson, Ö., Nilsson, N. and Bucheli, T. D., “DynamicColloid-Water Partitioning of Pyrene Through a Coastal Baltic SpringBloom,” Environmental Science and Technology, Vol. 35, No. 20, pp. ,(2001).
20. Holakoo, L., G. Nakhla, E. K. Yanful, and A. S. Bassi, “Chelating properties and molecular weight distribution of soluble microbial products from and aerobic membrane bioreactor,” Water Research, Vol. 40, pp.1531-1538(2006) .
21. Jacangelo., Joseph G., Chellam., Shankararaman., Trussel., Rhodes, R., “The membrane treatment,” Civil Engineering, Vol. 68(9), 42-45(1998).
22. Javeed, M.A., Chinu, K., Shon, H.K., Vigneswaran, S., “Effect of pre-treatment on fouling propensity of feed as depicted by the modified fouling index (MFI) and crossflow sampler-modified fouling index (CFS-MFI) ,” Desalination, Vol. 238, pp.98-108(2009).
23. Jiang, T., M. D. Kennedy, V. D. Schepper, S.-N. Nam, I. Nopens, P. A. Vanrolleghem, and G. Amy, “Characterization of Soluble Microbial Products and Their Fouling Impacts in Membrane Bioreactors,” Environmental Science & Technology, Vol. 44, pp.6642-6648(2010).
24. Kathleen Park Talaro and Arthur Talaro,“基礎微生物學”, 高立圖書有限公司, pp.48-59 ,(2009).
25. Kim, S. L., Chen, P. J., Ting, Y. P., “ Study on feed pretreatment for membrane filtration of secondary effluent,” Separation and Purification Technology, Vol. 29(2), pp.171-179(2002).
26. Kimura, K., T. Naruse, and Y. Watanabe, “Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling,” Water Research, Vol. 43, pp.1033-1039(2009).
27. Kertész, S., László, Z., Horváth, Z.H., Hodúr, C., “Analysis of nanofiltration parame-ters of removal of an anionic detergent,” Desalination, Vol. 221, pp.303-311(2008).
28. Khirani, S., Ben Aim,R., Manero, M.H., “Improving the measurement of the Modified Fouling Index using nanofiltration membranes (NF-MFI),” Desalination, Vol. 191, pp.1-7(2006).
29. Koo, C.H., Mohammad A.W., Suja’ F., Talib M.Z.Meor., “Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices,” Desalination, Vol. 287, pp.167-177(2012).
30. Kuo, W.-C., and G. F. Parkin, “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties,” Water Research, Vol. 30, pp.915-922(1996).
31. Lalman, J. A. “Anaerobic Degradation of Linoleic (C18:2), Oleic (C18:1) and Stearic (C18:0) Acids and their Inhibitory Effects on Acidogens, Acetogens and Methanogens”. In Civil Engineering, Vol. Doctor of Philosophy, 1-202 Canada: Toronto(2000) .
32. Liang, S., C. Liu, and L. Song, “Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential,” Water Research, 41, pp.95-101(2007).
33. Lu, W.M., Ju, S.C., “Selective particle deposition in crossflow filtration” ,Sep. Sci.Technol, Vol. 24, pp.517-540(1989).
34. McDonald, S., Bishop, A. G., Prenzler, P. D. and Robards, K., 2004,“Analytical Chemistry of Freshwater Humic Substances,” AnalyticaChimica Acta, Vol. 527, No. 2, pp.105-124.
35. Menniti, A., and E. Morgenroth, “Mechanisms of SMP production in membrane bioreactors: choosing an appropriate mathematical model structure,” Water Research, Vol. 44, pp.5240-51(2010).
36. Mostofa, K. M. G., Yoshioka, T., Konohira, E. and Tanoue, E., “Dynamics and Characteristics of Fluorescent Dissolved Organic Matterin the Groundwater, River and Lake Water,” Water, Air, and SoilPollution, Vol. 184, No. 1, pp.157-176(2007) .
37. Mostofa, K. M. G., Wu, F., Liu, C. Q., Fang, W. L., Yuan, J., Ying, W. L., Wen, L. and Yi, M.,“Characterization of Nanming River (Southwestern China) Sewerage-Impacted Pollution Using an Excitation-Emission Matrix and PARAFAC,”Limnology, Vol. 11, No. 3,pp.217-231(2010).
38. Nanda, D., Tung, K.L., Li, Y.L., Lin, N. J., Chuang, C.J., “Effect of pH on membrane morphology fouling potential and filtration performance of nanofiltration membrane for water softening,” J. Membr. Sci, Vol. 349, pp.411-420(2010).
39. Nicolaisen, B., “Developments in membrane technology for wáter treatment,”Desalination, Vol.153, pp.355-360(2002).
40. Noguera, D. R., N. Araki, and B. E. Rittmann, “Soluble microbial products (SMP) in anaerobic chemostats,” Biotechnology and Bioengineering, Vol. 44, pp.1040-7(1994).
41. Park, C., Kim, H., Hong, S., Choi, S.I., “Variation and prediction of membrane fouling index under various feed water characteristics,” J. Membr. Sci, Vol. 284, pp.248-254(2006).
42. Park, C., Kim, H., Hong, S., Lee, S., Choi, S.I., “Evaluation of organic matter fouling potential by membrane fouling index,” Water Sci. Technol. Water Supply, Vol. 7, pp.27-33(2007).
43. Qin, J.J., Oo, M. H., Wai, M. N., Ang, C.M., Wong, F. S., Lee, H., “A dual membrane UF/RO process for reclamation of spent rinses from a nickel-plating operation--a case study,” Water Research, Vol. 37(13), pp.3269-3278(2003).
44. R. R. C. New, “liposome:a practical approach”, Oxford University press, New York,(1990).
45. Ram, N. M., “ Environmental Significance of Trace Organic Contaminants in Drink Water Supplies. in Organic Carcinogens in Drinking Water ” Edited by M. R. Neil, et al., John Wiley and Sons, New York(1986) .
46. Rippeger, S. and J. Altmann, “Crossflow Microfiltration – State of the Art,”Separation and Purification Technology, Vol. 26, pp. 19-31(2003).
47. Ritmann, B. E., and P. L. McCarty, “Environmental Biotechnology : Principles and Application,” McGraw-Hill, (2001).
48. Salahi, A., M. Abbasi, T. Mohammadi, “Permeate flux decline during UF of oily wastewater: Experiment and modeling,” Desalination, Vol.251, pp.153-160(2010).
49. Schippers and Verdouw. J., ”The modified fouling index, a method of determining the fouling characteristics of water,” Desalination, pp.137-148, (1980).
50. Schippers, J.C., Kostense, A., Kostense, J., “Colloid removal by in line coagulation Antwerp,” Water filtration, Proc. Int. Symp, KVIV, R.A. Weiler, Antwerp, pp.4.57-4.64(1982).
51. Seymour S. Kremen and Matt Tanner. ”Silt density indices(SDI),percentplugging factor(%PF):their relation to actual foulant deposition,” Deslination, pp.259-262(1998).
52. Sim, Lee Nuang, Yun Ye, Vicki Chen, Anthony G. Fane, “Crossflow Sampler Modified Fouling Index Ultrafiltration (CFS-MFIUF)—An alternative Fouling Index,” J. Membr. Sci, Vol. 360, pp.174–184(2010).
53. Song, L., Chen, K.L., Ong, S.L., Ng, W.J., “A new normalization method for determination of colloidal fouling potential in membrane processes,” J. Colloid Interface Sci, Vol. 271, pp.426-433(2004).
54. Steinberg, C., Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches, Springer Verlag(2003).
55. Taylor ., Jacobs, E.P., “ Reverse osmosis and nanofiltration,” in:Water Treatment Membrane Processes,McGraw-Hill,chapter, 9, 16-28(1996).
56. Wenshan Guo et al., “A mini-review on membrane fouling,” Bioresource Technology, Vol. 122, pp. 27-34(2012).
57. Xie, W.-M., B.-J. Ni, T. Seviour, G.-P. Sheng, and H.-Q. Yu,“Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge,” Water Research, Vol. 46, pp.6210-6217(2012).
58. Yiantsios and Karabelas.,” An assessment of the Silt Density Index based on RO membrane colloidal fouling experiments with iron oxide particles,” Desalination, pp.229-238(2002).
59. 林士正、楊子岳、盧文章,薄膜程序前處理技術應用於廢水回收利用之評估,第五屆水再生及再利用研討會論文集,pp.200-210(2000).
60. 林士正、蔡幸芬、張振章,以逆滲透回收再利用染整產業排放水之研究,第二十四屆廢水處理技術研討會論文集,pp.101-106(1999)。
61. 林利故,「混凝劑影響薄膜積垢指標之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2005) 。
62. 宋明安,「溶解性有機物質影響薄膜積垢指標之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2005) 。
63. 林博焜,「污泥性質對薄膜生物反應槽積垢特性之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2007)。
64. 游雅淳,「垂直式與掃流式淤泥積垢指標之比較研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2012)。
65. 邵剛,反滲透,膜法水處理技術,冶金工業出版社,pp.128-239(2000)。
66. 高山鎮,「薄膜阻塞控制之研究」,碩士論文,國立成功大學環境工程學系,台南(2000)。
67. 黃明樟,「薄膜程序處理染整業放流水回收再利用之研究」,碩士論文,淡江大學水資源及環境工程學系,台北 (2001)。
68. 廢水薄膜處理技術應用與推廣手冊,經濟部工業局,pp.15-90(2000).
69. 張永信,「薄膜程序用於工業區廢水回收之研究」,碩士論文,國立成功大學環境工程學研究所,台南(2008)。
70. 方進忠,薄膜技術於水處理之應用,技術與訓練,23(6),pp.18-33(1996) 。
71. 簡筑伃,「操作因子對薄膜生物反應器處理成效與溶解性微生物產物特性之探討」,碩士論文,國立中央大學環境工程研究所,桃園(2013)。
72. 呂維明,固液過濾技術,高立圖書有限公司,101-134,(2004)。
73. 周明玄,「鴛鴦湖湖水溶解性有機碳之來源探討,碩士論文,國立台灣大學,生態學與演化生物學研究所,台北(2011)。
74. 孫志仁,「無機性混凝劑與生物程序放流水影響薄膜積垢指標之比較研究」,碩士論文,朝陽科技大學環境工程與管理系,台中2014)。
75. 黃國楨,“掃流微過濾之發展與應用”,中國化學工程學會會刊,第51 卷第3 期,第2-13 頁 (2004)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔