跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮海英
研究生(外文):Nguyen, Hai-Anh
論文名稱:爆震環境下氣墊船之結構動態分析
論文名稱(外文):Dynamic Analysis of Structure of Air Cushion Vehicle in Underwater Explosion Environment
指導教授:梁卓中梁卓中引用關係徐慶瑜
指導教授(外文):Liang, Cho-ChungHsu, Ching-Yu
口試委員:梁卓中徐慶瑜鄧作樑史建中吳重雄
口試委員(外文):Liang, Cho-ChungHsu, Ching-YuTeng, Tso-LiangShih, Chien-JongWu, Jong-Shyong
口試日期:2015-06-04
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:126
中文關鍵詞:水下爆震全墊式氣墊船音響-結構耦合耦合尤拉-拉格朗日分析法爆震反應氣泡脈衝損傷
外文關鍵詞:Underwater ExplosionAir Cushion VehicleAcoustic Structure CouplingCoupled Eulerian-LagrangianShock ResponseBubble Damage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
氣墊船 (Hovercraft) 又可稱為全墊式氣墊船(Air-cushion vehicle),為同時具有越過陸地、水面、泥濘地或其他性質表面越野能力之水面載具。對於軍用氣墊船進行存活性設計時,其必須具備承受極端負荷狀況如水下爆震 (Underwater explosion, UNDEX) 之能力。本論文利用類水牛級 (Zubr-class like) 氣墊登陸艇 (Air–cushioned landing craft, LCAC) 為對象,建構耦合水域場及結構體之有限單元數學模型,以音響-結構耦合分析法(Acoustic-structure coupling method) 及耦合尤拉-拉格朗日分析法(Coupling Eulerian Lagrangian method),探討於爆震負荷下之結構動態反應。
首先利用Kwon, Ramajeyathilagam及 Klaseboer等人實驗資料,針對圓筒殼及矩形平板於水下爆炸產生之主震波負荷及氣泡脈衝負荷狀況下之結構反應,驗證本論文建構分析程序及方法,證明其可靠性;進行氣墊船之抗水下爆震分析時,係以9kg TNT炸藥為震源,得到系列加速度、速度、結構變形及水域場爆壓等動態歷程分析成果,並探討氣墊船船體主結構 (Body structure) 及襯 裙 (Skirt) 之動態反應,本論文研究成果並可觀測氣墊船承受爆震時之流場噴流效應 (water-jet effect) 及不同區域位置之結構反應,研究成果可供氣墊船或船舶結構設計者進行水下爆震設計時參考使用。
A hovercraft, also known as an air-cushion vehicle or ACV, is a craft capable of traveling overland, water, mud or ice and other surfaces. Hovercraft must be designed to survive in the extreme loading conditions, such as an underwater explosion (UNDEX). However, for the previous study, the UNDEX response was primarily studied focus on ships, submarines and the other submerged structures. For this reason, this study selected a finite element model based Zubr-class like LCAC (Air-cushioned landing craft) subjected to UNDEX, dynamic responses of structure analysis were conducted. This study develops a procedure which links together the finite element method (FEM), Acoustic-Structure Coupling (ASC) method and Coupled Eulerian-Lagrangian (CEL) method to simulate an UNDEX and investigated the survival capability of a damaged craft. First, finite element model tests are conducted to verify and validate the propagation of shock response and bubble damage generated by an underwater explosive experiment of Kwon, Ramajeyathilagam and Klaseboer, which process the precision of the calculation model and method. The numerical model and method can be applied in practice. Second, finite element simulations of the hovercraft model subjected to UNDEX simulation that detonates of 9kg of TNT were presented using the same method. The characteristic of body structure and skirt responses of the hovercraft model are discussed. The numerical results show that besides global response, the body structure of hovercraft sustains severe local response especially is the main deck and skirt. In the case of UNDEX bubble simulation in free field. It is found through the calculation that the oscillation of bubble under the effect of gravity, water jet formation, and pressure pulse in the bubble collapse. It has been found that the appear the high-speed flow region in the middle of the bubble develops to form the water jet reaching approximately at 6.4 m/s in an upward direction when the bubble becomes doubly connected at 0.6s. After that, the velocity of the water jet decreases rapidly.
TABLE OF CONTENTS
Inside Front Cover
Signature Page
中文摘要 ..........iii
ABSTRACT..........iv
ACKNOWLEDGEMENTS..........vi
TABLE OF CONTENTS..........vii
LIST OF FIGURES ..........x
LIST OF TABLES ..........xiii
NOMENCLATURE ..........xiv
ABBREVIATION ..........xvii
Chapter I. INTRODUCTION ..........1
1.1 Background and Purpose.......... 1
1.2 Thesis Overview..........4
Chapter II. THEORETICAL BACKGROUND..........6
2.1 Air Cushion Vehicle: The Special Feature of Hovercraft..........6
2.2 Underwater Explosion (UNDEX) Phenomena..........8
2.2.1 Underwater explosion shockwave phenomenon..........10
2.2.2 Underwater explosion bubble phenomenon..........12
2.3 Acoustic-Structure Coupling Method (ASC)..........15
2.4 Coupled Eulerian-Lagrangian (CEL)..........19
2.5 Equation of State..........24
2.5.1 Us-Up EOS..........24
2.5.2 Ideal gas EOS..........25
2.6 Fracture Theory..........27
2.6.1 Introduction..........27
2.6.2 Damage initiation and evolution for ductile metals..........30
Chapter III. VALIDATION OF THE NUMERICAL METHOD..........33
3.1 ASC Method Validation..........33
3.1.1 Simulation and Damage of A Cylinder Subjected to UNDEX..........33
3.1.2 Rectangular Plate Subjected to Underwater Shock used ASC Method..........41
3.2 CEL Method Validation..........48
3.2.1 Simulation of Bubble and Free Dynamics in UNDEX..........48
3.2.2 Rectangular Plate Subjected to Underwater Shock Used CEL Method..........56
Chapter IV. MODELING AND SIMULATION..........60
4.1 Zubr-Class Modeling..........60
4.2 Underwater Explosion Simulation: Structural Response..........64
4.2.1 Dynamic Response of Air Cushion Vehicle with Shock-wave..........65
4.2.2 Dynamic Response of Air Cushion Vehicle with Bubble..........67
4.3 Underwater Explosion (UNDEX) Bubble Simulation..........68
Chapter V. SIMULATION RESULTS AND DISCUSSION..........70
5.1 Underwater Explosion Simulation: Structural Response..........70
5.1.1 Dynamic Response of Air Cushion Vehicle with Shock-wave..........70
5.1.2 Dynamic Response of Air Cushion Vehicle with Bubble-pulse..........81
5.2 Underwater Explosion (UNDEX) Bubble Simulation..........92
Chapter VI. CONCLUSIONS..........96
6.1 Conclusions..........96
6.2 Future Work..........98
APPENDIX..........99
A.1 UNDEX simulation of air cushion vehicle with shock wave..........99
A.2 UNDEX simulation of air cushion vehicle with bubble pulse..........116
REFERENCES..........123
CURRICULUM VITAE..........126

[1]Cole,R.H. Underwater explosion. Princeton University Press. Princeton,NJ. 1948
[2]Y.W.Kwon, P.K.Fox. Underwater shock responses of a cylinder subjected to aside-on explosion, Comput.Struct 1993; 48(4):646-737.
[3]K. Ramajeyathilagam, C.P. Vendhan. Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering 2004; 30:699-719.
[4]Rajesh Kalavalapally, Ravi Penmetsa and RamanaGrandhi. Multidisciplinary optimization of a lightweight torpedo structure subjected to an underwater explosion. Finite Elements in Analysis and Design2006; 43:103-111.
[5]Cho-Chung Liang, Yuh-Shiou Tai. Shock response of a surface ship subjected to noncontact underwater explosions. Ocean Engineering 2006; 33:748-772.
[6]C.F.Hung, B.J.Lin, J.J.Hwang-Fuu, P.Y.Hsu. Dynamic response of cylindrical shell structures subjected to underwater explosion. Ocean Engineering 2009; 36(8):564-577.
[7]Jin Qiankun, Ding Gangyi. A finite element analysis of ship sections subjected to underwater explosion. Impact Engineering 2011; 38: 558-566.
[8]JianLi,Ji-li Rong. Experimental and numerical investigation of the dynamical response of structures subjected to underwater explosion. European Journal of Mechanics B/Fluids 2012; 32: 59-69.
[9]ZhiZong, Yanjie Zhao, Haitao Li. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock. Marine Structures 2013;31:24-43.
[10]Nu Zhang, Zhi Zong, Wen Peng Zhang. Dynamic response of a surface ship structure subjected to an underwater explosion bubble. Marine Structures 2014; 35:26-4.4
[11]Hao Wang, Xi Zhu, Yuan Sheng Cheng, Jun Lin. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse. Marine Structures 2014; 39 :90-117.
[12]Zubr Class (Pomornik), Russia http://www.naval-technology.com/projects/zubr/
[13]Zubr Class http://www.alexpangillustration.com
[14]Zubr LCAC, http://www.globalsecurity.org/military/world/china/zubr.htm
[15]Warren D.Reid. The response of structure of surface ships to underwater explosions. Aeronautical and Maritime Research Laboratory 1996.
[16]Y.S.Shin. Naval ship shock design and analysis. Report at government expense ME4525 1994.
[17]ABAQUS Analysis User's Manual and Abaqus Theory Manual, version 6.11.1 Dassault Systèmes, RI, USA 2011.
[18]Gang Qiu, Sascha Henke, Jurgen Grabe. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics 2011; 38-1; 30-39.
[19] Hans U. Mair., 1995. Hydrocode methodologies for underwater explosion structure/medium interaction. Proceeding of the 66th Shock and Vibration Symposium, Volume II, SAVIAC, 227-248
[20]Kelvin H. Brown, Shawn P. Burns Mark A. Christon., 2002.Coupled Eulerian-Lagrangian Methods for Earth Penetrating Weapon Applications Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550.
[21]Hamashima, H., Kato, Y., Nadamitsu, Y., Itoh, S., 2003. Determination of JWL parameters from underwater explosion test for ideal and non-ideal explosives. Sci. Technol. Energ. Mater. 64, 248-53.
[22]G.P. Cherepanov, Mechanics of brittle fracture. 1979, English, Russian, Book, Illustrated edition.
[23]Cowper GR, Symonds PS. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Brown University Division of Applied Mathematics; September, 1957. Report No.28.
[24]Eulers Soren. The influence of the material relation on the accuracy of collision simulations. Marine Structures 2010; 23: 462-74.
[25]Klaseboer, E., Hung, K.C., Wang, C., Wang, C.W., Khoo, B.C., Boyce, P., Debono, S., Charlier, H., 2005. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a reslilient/rigid structure. J. Fluid Mech. 537, 387-413.
[26]Liang Yun., A.Bliault. Theory and Design of Air Cushion Craft. First published in Great Britain in 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top