跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳世男
研究生(外文):CHEN,SHI-NAN
論文名稱:田口方法於NAK80真空硬銲最佳化參數之研究
論文名稱(外文):Taguchi Method to Optimize Vacuum Brazing Parameters for NAK80 Steel
指導教授:李義剛李義剛引用關係
指導教授(外文):LI,YI-GANG
口試委員:紀華偉李弘彬李義剛
口試委員(外文):JI,HUA-WEILI,HONG-BINLI,YI-GANG
口試日期:2015-07-07
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:NAK80塑膠模具鋼真空硬銲田口方法銀基合金鎳基合金最佳化設計
外文關鍵詞:NAK80Plastic mold steelVacuum brazingTaguchi methodSilver-base alloyNickel-base alloyOptimization of deisgn
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
日常生活中,塑膠製產品幾乎是不可或缺地!而在塑膠射出成形之生產技術不斷地進步下,模具的材料選用和製造技術發展更是扮演著重要的角色。現行模具模穴的冷卻水路製作,經常利用鑽孔加工方式進行。由於,加工技術的無法突破,水路受到諸多限制。當冷卻液體在迴路中流動時,會有許多通道無法回流或離穴位距離太遠,造成污垢不易清理且冷卻效益不佳。因此,若能引入硬銲製程來克服模具冷卻水路的製造技術問題,則可使其在設計上非常有彈性,且讓冷卻液的循環更順暢、均溫控制更容易。
金屬材料之熱處理往往對材料的使用性質和生產成本有很大的影響,故本研究即以塑膠模具鋼NAK80之熱處理特性進行真空硬銲製程的相關規劃,並以田口品質方法做為真空硬銲製程之最佳化參數設計。低溫製程之銲接填料選擇片狀的活性銲料(Ag-Cu-Ti),而田口方法的控制因子採以:硬銲溫度、持溫時間、表面粗糙度、間隙值等。經計算和分析可獲得最佳化參數設計:硬銲溫度「920℃」、持溫時間「50分鐘」、間隙值「0.15µm」、表面粗糙度「0.12µm」。最後,經確認實驗之剪應力為:249MPa,顯示本研究結果為:可信賴。NAK 80已預硬的硬度為HRC 36~41,經真空硬銲製程的母材硬度略下降到HRC 34,然再經銲後熱處理即可恢復到適用值(HRC 41)。觀察銲道內鈦元素在近母材側堆積,母材的鐵元素會通過這層組織擴散至銲道內;銀的基地相中,會有不同形態的富Cu、Ti、Fe等析出相出現。而且,該析出相( HV360 )經微硬度測試硬度值高於銀-銅基地相( HV108 ),達到三倍以上的差異。
高溫製程的銲接填料則採用自行調製為膏狀的鎳基合金(BNi-2)。選擇BNi-2合金為填料的原因,係因使用Ag-Cu-Ti合金進行真空硬銲製程時最高強度為249MPa,而參考鎳基銲料相關文獻,評估藉由BNi-2合金能使銲件接合強度更上一個層次。經過計算和分析,可獲得最佳化設計參數為:接合溫度「1050℃」、持溫時間「20分鐘」、表面粗糙度「0.14µm」、夾持力「10N‧m」。最後,經確認實驗之剪應力為:529.6MPa,顯示本研究結果為:可信賴。觀察銲道內,NAK80銲道中心有NiCrFe固溶體及殘留的Cr基固溶體產生;在擴散層發現含有FeNi3化合物,代表元素已達到擴散和接合效果。銲道中心硬脆層的硬度值:1050℃/5min(best)>1050℃/20min >1075℃/20min,證明銲道中硬脆層硬度值過高不利於銲件。
綜合上述結果, NAK80的研究可進一步在模具上進行相關實體設計之分析和驗證。

關鍵字:NAK80、塑膠模具鋼、真空硬銲、田口方法、銀基合金、鎳基合金、最佳化設計

The things we contact in life, plastic products are almost indispensable. And under the production of plastic injection molding technology continues to improvement the mold materials play an important role. The manufacture of water cooling channels in mold cavity nowadays often uses drilling techniques. However, due to the limitation of technology, tooling of channels is under certain restrictions. Negative results can be non-refluxing channels and distant cavities that produce stains which are hardly removable or the inefficiency of cooling. Therefore, if weld process can be applied to overcome the channel tooling problem, the design can be more flexible and simply the circulation of cooling fluid and temperature control.
Hot treatment of metal is usually crucial to the properties of the material as well as the cost, which is why this research focuses on the programming of vacuum brazing the steel NAK80 according to its properties in hot treatment. Moreover, Taguchi method is applied to optimize the parameters of the vacuum brazing process. Sheet active alloy (Ag-Cu-Ti) is selected as the brazing filler in low temperature process. The control factors in Taguchi method are the temperature of brazing, holding time, clearance value and roughness. Optimized parameters can be acquired through caculation and analysis and the results are: brazing temperature 「920℃」, holding time 「50mins」, clearance value「0.12µm」 and roughness 「0.15µm」. Finally, with the outcome of the experiment the shearing power is 249MPa, which shows the result of the research is reliable. NAK80 pre-hard hardness is HRC 36~41, by vacuum brazing process of the base metal hardness decreased slightly to HRC 34, and then by the post welding hot treatment can be restored to the applicable properties. Observe the weld titanium base metal side in recent accumulation of iron base material will spread to the weld through this layer of tissue. In the silver based phase with different forms of rich Cu, Ti, Fe and other excluded phase appeared. Furthermore, the precipitation phase (HV360) by micro-hardness testing hardness values higher than silver - copper base phase (HV108), reached more than three times the difference.
Self-made Nickel-base alloy (BNi-2) paste is chosen as brazing filler in the hot working process. Select BNi-2 alloy as filler reasons, was due to the use of Ag-Cu-Ti alloy vacuum brazing process the highest strength of 249MPa, and nickel-based solder literature reference, assessment by BNi-2 alloy welded specimens enables engagement intensity even higher levels. Optimized parameters can be acquired through caculation and analysis and the results are: brazing temperature 「1050℃」, holding time 「20mins」, roughness 「0.14µm」 and gripping force 「10N.m」. Finally, with the outcome of the experiment the shearing power is 529.6MPa, which shows the result of the research is reliable. Observe the weld, NAK80 bead has NiCrFe solid solution and the remaining Cr based solid solution produced; diffusion layer was found to contain FeNi3 compound, on behalf of diffusion and engaging element has reached effect. Hardness weld center brittle layer: 1050 ℃ / 5min (best) > 1050 ℃ / 20min > 1075 ℃ / 20min, prove brittle layer hardness value is too high is not conducive to the weld bead welded specimens.
In sum, the study of steel NAK80 is expected to be applied in substance design for further analysis and verification.
Keywords:NAK80, Plastic mold steel, Vacuum brazing, Taguchi method, Silver-base alloy, Nickel-base alloy, Optimization of deisgn

目錄

封面內頁
簽名頁
中文摘要....................................iii
Abstract...................................v
誌謝.......................................vii
目錄.......................................viii
圖 目 錄...................................xi
表 目 錄...................................xiv

第一章 前言................................1
1.1 研究動機...............................1
1.2 研究目的...............................6
第二章 文獻回顧.............................7
2.1塑膠模具鋼之種類.........................7
2.2 NAK80預硬鋼簡介........................10
2.3 NAK80 預硬鋼熱處理.....................14
2.4 材料接合定義...........................15
2.5 硬銲的定義.............................16
2.6 真空硬銲介紹...........................20
2.7 真空硬銲與傳統硬銲之比較................22
2.8 硬銲填料的應用.........................24
2.9 田口方法...............................25
2.10 直交表的選擇與配置.....................26
2.11 參數設計程序..........................27
2.12.1 選擇品質特性 ......................27
2.11.2 確認信號因子和控制因子...............28
2.11.3 實驗設計...........................28
2.11.4 資料分析...........................28
第三章 實驗方法............................30
3.1 實驗流程..............................30
3.2 實驗材料..............................30
3.3 DTA 熱分析............................32
3.4 真空硬銲參數設定.......................32
3.5 銲後分析方法..........................35
3.5.1 剪力拉伸實驗........................35
3.5.2 顯微組織觀察........................36
3.5.3 微硬度量測 .........................36
3.5.4 XRD分析............................37
3.5.5 TEM分析............................38
第四章 結果與討論..........................39
4.1 以銀基合金為填料之NAK80真空硬銲製程開發..39
4.1.1 銀基填料DTA 分析.....................39
4.1.2 田口方法及剪切度.....................41
4.1.3 確認參數............................46
4.1.4 顯微組織觀察與分析...................46
4.1.5 微硬度分佈..........................53
4.1.6 破斷面分析..........................54
4.2 以鎳基合金為填料之NAK80真空硬銲製程開發..57
4.2.1 鎳基合金DTA分析.....................57
4.2.2 田口方法及剪切強度...................58
4.2.3 顯微組織觀察與分析...................63
4.2.4 TEM分析............................66
4.2.5 確認參數............................67
4.2.6 微硬度分佈 .........................68
4.2.7 破斷面觀察..........................70
第五章 結論...............................73
5.1 以銀基合金之NAK80真空硬銲製程開發.......73
5.2 以鎳基合金之NAK80真空硬銲製程開發.......75
參考文獻..................................77

[1]歐陽渭城,射出成形模具手冊,全華圖書,台北,第1-40頁,1992。
[2]林信隆,塑模設計及加工,機械技術,台北,第211-226頁,1988。
[3]陳介聰,射出成形用模具,復文書局,台南,第105-1456頁,2001。
[4]周森,複合材料,全威圖書,新北,第2-158頁,2009。
[5]http://www.oerlikon.com/metco/
[6]塑膠模具鋼技術資料。
http://www.daidosteel.com.tw/daidosteel/files/P133-141.pdf.
[7]高級鏡面塑膠模專用析出硬化型預硬鋼大同“NAK80”技術資料,大同公司。
http://www.daidosteel.com.tw/daidosteel/files/P115-120_NAK80.
[8]李衍榮,板條狀顯微組織對流旋形麻時效鋼EBW銲件之機械性質影響,碩士論文,新竹,2004。
[9]S. Floreen, Maraging steels, 9th. Ed., AMS Metals Handbook, Vol.1, pp.445-452, 1990.
[10]李義剛,熱處對流旋形麻時效鋼 EBW 銲件顯微組織與機械性質之影響,博士論文,新竹,2002。
[11]周長彬,銲接學,全華圖書股份有限公司,32-48頁,2007年。
[12]G. Humpston, D.M. Jacobson, Principles of Soldering and Brazing, ASM International, pp.3-4, 1993.
[13]M.M. Schwartz, Brazing, ASM International, pp.10-14, 1987.
[14]D.L. Olson et. al., ASM Handbook Welding, Brazing, and Soldering, ASM International, Vol.6, pp.6-9, 1993.
[15]R. Gourley, C. Walker, Proceedings of the Fifth International Brazing and Soldering Conference, ASM International, pp.236-301, 2012.
[16]薛人愷,硬銲之基本原理及應用,銲接與切割,第7卷,第3期,33-43頁,1997年。
[17]E. A. Fenton, Brazing Manual, 3rd ed., AWS, pp.23-81, 1984.
[18]J.M. David, H. Giles, Principles of Brazing, 1th. Ed., ASM International, pp.1-44, 2005.
[19]林俊舜,A6061之真空硬銲研究,碩士論文,大葉大學,彰化,2013。
[20]鄭弘昇,以田口方法探討 Inconel 718 與 17-4PH 不銹鋼 之最佳化真空硬銲參數設計,碩士論文,大葉大學,彰化,2014。
[21]盧仕修,田口方法對SKD61真空硬銲最佳化參數之研究,碩士論文,大葉大學,彰化,2014。
[22]W. Jiang, J.M. Gong, S.T. Tu, Effect of holding time on vacuum brazing for a stainless steel plate–fin structure, Materials and Design, Vol.31(4), pp.2157-2162, 2010.
[23]Y. Li, P. He, J. Feng, Interface structure and mechanical properties of the TiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti / Ag-Cu filler metal, Scripta Materialia, Vol.55, pp.171-174, 2006.
[24]P. Lin, Y.J. Li, J. Wang, J. Guo, Vacuum Brazing Technology and Microstructure Near the Interface of Al/18-8 Stainless Steel, Materials Research Bulletin,Vol.38, pp.1493-1499, 2003.
[25]X. Li, Li Li, Ke Hu, S. Qu, Vacuum brazing of TiAl-based intermetallics with Ti-Zr-Cu-Ni-Co amorphous alloy as filler metal, Intermetallics, Vol.57, pp.7-16, 2015.
[26]X.P. Zhang, Y.W. Shi, A Dissolution Model of Base Metal in Liquid Brazing Filler Metal During High Temperature Brazing, Scripta Materialia, Vol.50, pp.1003-1006, 2004.
[27]邱垂昌,銀基填料對高熵合金真空硬銲特性之研究,碩士論文,國立交通大學,新竹,2005。
[28]S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, C.H. Chuang, Joining 6061 Aluminum Alloy with Al–Si–Cu Filler Metals, Journal of Alloys and Compounds, Vol.488, pp.174-180, 2009.
[29]Z. Wang, H. Wang, L. Liu, Study on Low Temperature Brazing of Magnesium Alloy to Aluminum Alloy Using Sn–xZn Solders, Materials and Design, Vol.39, pp.14-19, 2012.
[30]J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim, C.Y. Kang, Microstructures and Mechanical Properties of Inconel 718 Welds by CO2 Laser Welding, Journal of Materials Processing Technology, Vol.201, pp.515-520, 2008.
[31]周荻翔,碳化鎢與420不鏽鋼感應硬銲之製程最佳化與銲件性能 研究,博士論文,國立台灣科技大學,台北,2011。
[32]X.Yuan, C. Y. Kang, M. B. Kim ,Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal ,Materials Characterization, Vol.60, pp.923-931, 2009.
[33]F.Z. Wang, Q.Z. Wang, B.H. Yu, B.L. Xiao, Z.Y. Ma, Interface structure and mechanical properties of Ti(C,N)-based cermet and 17-4PH stainless steel joint brazed with nickel-base filler metal BNi-2, Journal of Materials Processing Technology, Vol.211, pp.1804-1809, 2011.
[34]M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations, Materials Science and Engineering: A, Vol.447, pp.125-133, 2007.
[35]X.G. Song, J. Cao, Y.F. Wang, J.C. Feng, Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint, Materials Science and Engineering: A, Vol.528(15), pp.5135-5140, 2011.
[36]Y.M. He, J. Zhang, Y. Sun, C.F. Liu, Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag-Cu-Ti + Mo composite filler, Journal of the European Ceramic Society, Vol.30, pp. 3245-3251, 2010.
[37]蘇朝墩,品質工程,中華民國品質學會,台北,第7-111頁,2006。
[38]李輝煌,田口方法-品質設計的原理與實務(第四版),高立圖書,台北,第19-68頁,第181-217頁,第249-277頁,2011。
[39]S. RK, Wu SK, C. CH., The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys, J Alloy Compd, Vol. 372, pp.148-57, 2004.
[40]D. DS, O. WA, P. DF, TLP bonding:a new method for joining heat resistant alloys, Journal Article, Vol.53(4): pp.203-214, 1974.
[41]Y. Zhou, W.F. Gale, T.H. North, Modelling of transient liquid phase bonding, International Materials Reviews, Vol.40(5), pp.181-196, 1995.
[42]張貴鋒、張建勘、王士元、邱鳳翔,瞬時液相擴散銲與硬銲主要特點之異同,銲接學報,第23卷第6期,2002。
[43]D.C. Wen, Microstructure and corrosion resistance of the layers formed on the surface of precipitation hardenable plastic mold steel by plasma-nitriding, Applied Surface Science, Vol.256(3), pp.797-804, 2009.
[44]W.F. Ding, J.H. Xu, M. Shen, H.H. Su, Y.C. Fu, B. Xiao, Joining of CBN abrasive grains to medium carbon steel with Ag single bond Cu/Ti powder mixture as active brazing alloy, Materials Science and Engineering :A, Vol. 430, pp.301-306, 2006.
[45]A. Caro, P.E.A. Turchi a, M. Caro, E.M. Lopasso, Thermodynamics of an empirical potential description of Fe-Cu alloys, Journal of Nuclear Materials, Vol. 336, pp.233-242, 2005.
[46]H. N, TREATISE ON SOLID STATE CHEMISTRY, volum5 changes of state, SPRINGER, New York, 1921.
[47]http://www.crct.polymtl.ca/fact/documentation/TDNucl/TDnucl_Figs.htm.
[48]X. Yue, P. He, J.C. Feng, J.H. Zhang, F.Q. Zhu, Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal Materials Characterization, Vol.59, pp.1721-1727, 2008.
[49]Y.L. Lee, R.K. Shiue, S.K. Wu, The microstructural evolution of infrared brazed Fe3Al by BNi-2 braze alloy, Intermetallics, Vol.11, pp.187-195, 2003.
[50]V. Jalilvand, H. Omidvar, H.R. Shakeri, M.R. Rahimipour, Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy, Materials Characterization, Vol.75, pp.20-28, 2013.
[51]X. Yuan, C. Y. Kang, M. B. Kim, Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal ,Materials Characterization, Vol.60, pp.923-931, 2009.
[52]F.Z. Wang, Q.Z. Wang, B.H. Yu, B.L. Xiao, Z.Y. Ma, Interface structure and mechanical properties of Ti(C,N)-based cermet and 17-4PH stainless steel joint brazed with nickel-base filler metal BNi-2, Journal of Materials Processing Technology, Vol.211, pp.1804-1809, 2011.
[53]M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations, Materials Science and Engineering: A, Vol.447, pp.125-133, 2007.
[54]J. Shang, J. Yan, N. Li, Brazing W and Fe-Ni-Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers, Journal of Alloys and Compounds, Vol.611, pp.91-95, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top