跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝翔偉
研究生(外文):Hsieh Hsiang Wei
論文名稱:電木射出成型之料管與模具的熱傳分析
論文名稱(外文):Heat Transfer Analysis of Barrel and Mold for Phenolic Injection Molding
指導教授:吳佩學
指導教授(外文):Wu, Pey-Shey
口試委員:吳佩學楊儒陳國祥
口試委員(外文):Wu, Pey-SheyYang, RuChen, Kuo-Hsiang
口試日期:2015-07-21
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:塑膠射出電木熱傳分析
外文關鍵詞:Plastic injectionphenolicheat transfer analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:547
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
塑膠射出成型機是一種日益重要、使用率日益提升的塑膠製品成型加工機,其表現也一直被要求提高,產值ㄧ再上揚,甚至跨入高科技領域。由於電木是熱固性塑膠,當工作一段時間後,會因為噴嘴附近過熱而造成電木熔膠阻塞或流動不易,亦或模具溫度分布不均,保壓、保溫時間不當,均會導致成品失敗。另外,射料管和模具存在有溫度差,易造成熱傳遞,再加上射出成型製程中,噴嘴與射料管前端均被埋在固定盤之凹穴,與空氣有微小間隙,熱對流加上熱輻射的關係,使噴嘴周遭溫度上升。一旦熔膠溫度快速上升,只會讓熔膠加速硬化,如果保壓時間過長,在噴嘴內的熔膠會逐漸硬化,導致充填階段熔膠不易射出或無法射出。因此,在電木射出成型的工作流程中,從射料管到模具的溫度分布與熱傳的掌控是獲得良好產品非常重要的關鍵。
本研究採用ANSYS THERMAL與 ANSYS THERMAL TRANSIENT等軟體分析電木射出成型之工作流程中,射料管與模具之熱傳與溫度分布,並針對以下可能有助於製程改善之因素進行探討:(1)改變模具加熱板位置、寬度與加熱功率; (2)增加射料管前端的加熱油道或是加熱環;(3)預熱階段的螺桿位置;(4)射出成型製程中噴嘴與射料管前端的散熱方式。
本熱傳分析結果歸納如下:(1)適當的改變模具加熱板位置能使模穴更快達到工作溫度,但是也有導致過度升溫的缺點;加熱棒功率可從800W降至120W以提高省電效率;加熱板尺寸的增大可以更均勻的使模具加溫。(2)預熱階段可增加射料管前端的加熱油道或是加熱環以代替人工瓦斯加熱,以節省人力成本。(3)預熱階段的螺桿位置對於射料管與噴嘴加熱的影響不大。(4)增加射料管前端的油道在射出成型製程中可以將多餘的熱帶走,使射料管的溫度下降,以保持工作溫度,避免熔膠在噴嘴端固化。

Plastic injection molding machine is a kind of forming machine for plastic products. It has increasing importance, usage and output values in the world, even in the high-tech fields. Therefore, improvement of its performance is always highly expected. Because phenolic is a kind of thermosetting plastic, overheating around the nozzle may cause flow difficulty of the melting phenolic and obstruction of the channel. Besides this, other factors such as non-uniformity of temperature distribution in the mold, inadequate dwelling time of pressurized and heated state in the mold, will cause failure of the final products. In addition, there exists temperature difference between the barrel and the mold, and heat transfer between them. During injection molding process, the nozzle and front part of the barrel are trapped in a cavity of an anchoring plate. Convection in the gap and radiation between surfaces may cause the temperature around the nozzle to rise. If the temperature of phenolic in the barrel rises too rapidly or the dwelling time is too long, hardening of phenolic causing difficulty or failure of the injection from the nozzle may be accelerated. Therefore, in the whole working process of phenolic injection molding, the control of temperature distribution and heat transfer in the barrel and the mold is an important key to the success of obtaining good products.
In this study, the software ANSYS THERMAL and ANSYS THERMAL TRANSIENT are employed in the analysis of the temperature and heat transfer in the barrel and the mold for a phenolic injection molding process. Investigations are focused on the following factors which may help improvement of the manufacturing process: (1) variation of the heating plate position, width and the heating power; (2)adding heating oiled channel or adding a heating ring to the front part of the barrel; (3) screw position at the preheating stage; (4) cooling of the nozzle and the front part of the barrel.
Results of the present heat transfer analysis are summarized as follows. (1) Suitable change of the heating plate position may help the mold cavities to reach the desired working temperature. However it also has the drawback of overheating. The heating power can be reduced from 800W to 120W to save energy. Increasing the size of the heating plate may give rise to more uniform temperature distribution for the mold. (2) During preheating stage, it is advisory to adding heating oil channel or heating ring to the front part of the barrel to save man power using external gas heating. (3) The effect of the screw position during preheating stage is negligible. (4) During the injection molding process, addition of the oil channel to the front part of the barrel can help remove waste heat, thus reduce the temperature of the barrel, maintain its working temperature, and avoid hardening of phenolic around the nozzle.

第一章 緒論
1.1工程塑膠材料......1
1.2射出成型簡介.......2
1.3電木性質介紹......4
1.4 文獻回顧......5
1.5研究動機與目的......12
第二章 問題描述與研究方法
2.1模具熱傳分析......16
2.2射料管熱傳分析...... 18
2.3模具與射料管結合系統分析......19
2.4數值模型......21
2.5網格數量測試......25
第三章 結果與討論
3.1模具溫度分布......57
3.1.1基本案例.......57
3.1.2改變加熱位置之影響.......57
3.1.3改變加熱面積......58
3.1.4 改變加熱瓦數......59
3.2射料管溫度分布...... 60
3.2.1基本案例......60
3.2.2螺桿位置對於射料管預熱溫度分布之影響......60
3.2.3改變加熱設計之影響......61
3.3模具與射料管結合系統的溫度分布......61
3.3.1基本案例......61
3.3.2改變注料噴嘴加熱設計之影響......62
第四章 結論......100
參考文獻......102

【1】魏綸群,塑膠射出成型製程時間最佳化設計,元智大學機械工程研究所碩士論文,民國96年。
【2】朱育儀,溫度和厚度對薄件射出成型之充模影響,中圓大學機械工程學系碩士論文,1999年。
【3】陳俊豪,薄殼射出成型之模穴壓力分佈量測,中原大學機械工程學系碩士論文,1999年。
【4】許家興、張致遠、劉士榮,傳統薄殼射出成型之成型性及最佳化參數設計,第二十四屆高分子研討會論文專輯,pp.561-562,2001年。
【5】Yao, M.C. and Tia, C. C., Effective factors in the warpage problem of an injection-mold part with a thin shell feature, Journal of Materials Processing Technology,vol.110,n 1,pp.1-9,Mar,2001.
【6】Shen, Y. K., Yeh, P. H., and Wu, J. S., Numerical simulation for thin wall injection molding of fiber-reinforced thermoplastics, International Communications in Heat and Mass Transfer, vol.28,n 8,pp. 1034-1042 November,2001.
【7】曾宇譚,塑膠射出成型之製程參數不同材質縫合線強度的影響,國立成功大學工程科學研究所碩士論文,1997年。
【8】Chien, R.D., Chen, S.C., Peng, H.S., Su, P.L., and Chen, C.S., Investigations on the Weldline Tensile Strength of Thin-wall Injection Molded Part, Journal of Reinforced Plastics and Composites, vol.23, n 6,pp. 575-588,2004.
【9】李永昌,應用田口法與類神經網路於射出成型製程參數之設計與最佳化,國立台灣科技大學,1998年。
【10】蔡昭源,微結構熱壓成型之模擬分析,大葉大學機工程研究所碩士論文,2006年。
【11】Lin, S.J., Hsu C.H., Chang, C.Y., Parametric characterization of the thin-wall injection molding of thermoplastic composites, Journal of Reinforced Plastics and Composites, vol.21,n 11, pp.1027-1041,2002.
【12】Hward, W.C. and Charles C. M., Injection Molding: The Effect of Filling Time on Properties, Poly Eng. And Sci. vol.26, No.7, pp.488-498, 1986.
【13】Menzes, J., Schmidt T., and Postch, G., Shrinkage Calculation Programs Improve Molding Quality, Modern Plastics International, pp.68-71,1987.
【14】曾世昌,微射出成型技術於微機電系統之應用與研究,國科會研究成果報告,1997年。
【15】施垂研,微射出成型技術於微機電系統之應用與研究,雲林科技大學,碩士論文,1999年。
【16】Desp, M.S., Injection Molding of polymeric LIGA HARMs, Microsysem Technology, 1999.
【17】蔡森章,具微小結構或貫穿孔之薄肉及微射出成型研究,雲林科技大學,碩士論文,2002。
【18】李新叢,殘留應力超音波檢測之正反算理論研究,台灣大學應用力學研究所博士論文,1999。
【19】Seigmann, A., Buchman, A., and Kenig, S., Residual Stresses in polymerⅢ: The Influence of Injection-Molding Process Condition, Polymer Engineering and Science, vol.22,No40, pp.560,1982.
【20】Jansen , K.M., Heat Transfer in Injection Molding Systems with Insulation Layers and Heating Elements, Int. J. Heat Mass Transfer, vol.38,No.2,pp.309-316, 1995.
【21】Jansen, K. M. and Flaman, A. M., Construction of Fast-Response Heating Elements for Injection Molding Applications, vol.34,pp.194-197.1994.
【22】Liyong Yu, Chee G. K., Kurt K., James L. M., and Madou J., Experimental Numerical Analysis of Thin-wall Injection Molding with Micro-Features, ANTEC, 2001.
【23】Friesenbichler W., Knappe W., and Rabitsch, R., Injection Molding with Reduced Packing and without Packing, International Polymer Science and Technology,3,p.191,1988.
【24】陳秋君,含加熱系統模具模溫之模擬與驗證,中原大學碩士論文,2001。
【25】凌啟文,射出壓縮成型模具模板之熱變形分析,全國力學會議論文集,pp.147-154,1999。
【26】張振銓,高深寬比微結構模仁的製作程序的研究-利用矽加工技術,國立交通大學碩士論文,2002年。
【27】Liu S.J., Wu J.Y., Chang J.H., An Experimental Matrix Design to Optimize the Weldline Strength in Injection Mold Part, Polymer Engineering and Science,vol.40,5,pp.1256-1262,2000.
【28】Koster, R. P., Importance of Injection Molding Parameters for Mechanical Performance of Cold Flow Weld Lines, Journal of Injection Parts, Polymer Engineering and Science, vol.43,No.1,pp.157-168,2003.
【29】Brockmann, C. and Michaeli, W., Injection Compression Molding-A Low Pressure Process for Manufacturing Textile-Covered Moldings, ANTEC 97,pp.441-445,1997.
【30】蘇永祥,降低BMC射出成型包風不良之研究,高雄應用科技大學模具系碩士論文,2013年。
【31】韓麗龍,王詩薇,多模穴塑膠濾網之CAE流動平衡分析,模具既應用產業技術論文發表會論文集,2012年。
【32】夏宏中,高性能工程塑膠及複合材料-熱性、流變性和型態學之研究,清華大學化學工程學系碩士論文,1985年。
【33】張仲卿、張進寬、侯順雄、杜鳳棋譯,熱傳遞第四版,高立圖書有限公司,民國86年。
【34】張永彥,塑膠模具設計學,全華圖書股份有限公司,民國96年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊