跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林御玄
論文名稱:近場靜電紡絲圖形化製作與感測應用之研究
論文名稱(外文):Patterning and Fabrication of Nanofibers Using Near-field Electrospinning for Sensor Application
指導教授:張興政
口試委員:洪三山鄒慶福
口試日期:2015-06-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:91
中文關鍵詞:近場靜電紡絲微奈米圖案化奈米纖維奈米電晶體感測元件溫度和濕度量測
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以直寫式近場靜電紡絲技術和材料聚乙烯吡咯啶酮(Polyvinyl pyrrolidone)製作可控型態的奈米纖維結構,分析靜電紡絲製程參數對紡出纖維外觀與特性之影響。透過X-Y軸移動平台收集排序的奈米纖維,有效控制線徑與電性,開發奈米纖維場效電晶體感測元件,並進行電性量測與分析。利用場效電晶體的溫度效應特性,對元件進行溫溼度電性響應分析,觀察其電流-電壓特性曲線與阻值變化,且能夠對不同濕度環境進行監控與分辨。奈米纖維電晶體感測元件整合聚乙烯吡咯啶酮奈米纖維與金屬電極於同一晶片上,此電晶體元件體積小、精密性高與靈敏度高。利用傳統場效電晶體之原理與特性,探討施加於閘極電壓不同時,流過汲極源極電流大小與特性。實驗探討不同通道長度、奈米纖維數、操作電壓、環境影響與感測變數的相關性,進而實際量出元件I-V特性圖,得到電晶體的各種特性。I-V電性輸出範圍為-5 V至5 V,此元件之線性區為-2 V~2 V。在通道長度100-500 μm範圍,單條與十條纖維結構的電晶體元件阻值變化為5.74 ~ 5.83 MΩ與5.60 ~ 5.74 MΩ;而電流值變化則為35.98 ~ 34.18 nA與39.29 ~ 38.08 nA;在相對溼度30-70 %RH範圍,通道長度100 μm,單條與十條奈米纖維之靈敏度分別為0.182和0.136 MΩ/%RH。此元件臨界電壓為35 V,在汲源極電壓小於20 V之電流—電壓關係呈線性變化;汲源極電壓大於45 V之電流呈現近飽和狀態。
The research develops nanofiber-based sensing structures based on the materials of polyvinyl pyrrolidone by using near-field electrospinning technique. The electrospinning process parameters are analyzed to characterize properties of the spun fibers. The near-field electrospinning technology using direct write, continuous and controllable method is used to deposit solid nanofibers. The nanofibers are deposited on the collector by stretching and whipping rejection process. Polyvinyl pyrrolidone is used to electrospun nanofibers. The research develops polyvinyl pyrrolidone nanofibers field-effect transistor-based sensor is fabricated by electrospinning, photolithography, and lift-off processes to measure and analyze the electrical property. The advantages of the field-effect transistor-based sensor combined polyvinyl pyrrolidone nanofibers and metal electrodes in the chip have small volume, high precision and high sensitivity. Based on traditional field effect transistor principle and characteristic, the charges flow passes through the drain-source current characteristics which is discussed by apply different gate voltages. Experiment and investigate are excuted for effects of different channel length and numbers of nanofiber, operating voltage, current and resistance correlation. And I-V characteristics of MOS transistors are obtained. The output voltage is limited in the range of -5 V to 5 V, and the linear operation region of this element is-2 V~2 V. A single nanofiber and ten nanofibers channel structure devices has resistance 5.8 MΩ and 5.6 MΩ in the channel lengths between 100 and 500 μm. The measured current were 36 nA and 39.3 nA. A single nanofiber and ten nanofibers channel structure devices has resistance 13.01 MΩ and 13.03 MΩ in the relative humidity between 30 and 70 % on the channel lengths 100 μm. The threshold voltage of devices is 35 V. When the drain-source voltage is operated less than 20 V, the linear dependence of current-voltage relationship is obtained. When the drain-source voltage is operated greater than 45 V, the current becomes saturation.
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻探討 3
1.4 研究方法與目標 14
第二章 近場靜電紡絲技術與場效電晶體原理 16
2.1 近場靜電紡絲製程原理 16
2.1.1 近場靜電紡絲 16
2.1.2 一般靜電紡絲與近場靜電紡絲比較 17
2.1.3 靜電紡絲鞭甩理論 18
2.1.4 一維穩態模型 18
2.2 奈米纖維圖案化結構 20
2.3 纖維定向理論 21
2.4 金屬氧化物半導體場效電晶體 22
2.5 奈米纖維的場效電晶體元件 25
第三章 製程規劃與參數控制 30
3.1 近場靜電紡絲實驗架構 30
3.2 高分子紡絲材料 33
3.2.1 近場靜電紡絲圖形化實驗藥品 33
3.3 奈米纖維圖案化 34
3.3.1 近場靜電紡絲溶液製備 34
3.3.2 奈米纖維薄膜製作 35
3.3.3 奈米纖維收集方式 36
3.4 平台運轉控制 37
3.5 奈米纖維電晶體製程 38
3.5.1 微感測元件設計 39
3.5.2 光罩設計 40
3.5.3 奈米纖維電晶體製程規劃 41
第四章 分析與量測 44
4.1 奈米纖維圖形化製作與分析 44
4.1.1 平台移動速度對奈米纖維沉積型態之影響 44
4.1.2 距離對奈米纖維沉積型態之影響 47
4.1.3 靜電紡絲網格狀圖案 49
4.1.4 PVP奈米纖維之表面形貌分析 49
4.2 感測電極製程與分析 52
4.2.1 感測電極製程 53
4.2.2 感測電極特性分析 54
4.2.3 靜電紡絲PVP奈米纖維製程 56
4.3 PVP奈米纖維電晶體量測與分析 57
4.3.1 電性量測架構 57
4.3.2 奈米纖維電晶體量測特性分析 58
4.3.3 溫度與溼度量測 67
第五章 未來工作與結論 70
5.1 結論 70
5.2 未來發展 71
參考文獻 72
[1]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-dimensional nanostructures: synthesis, characterization and applications,” Advanced Materials, Vol. 15, pp. 353-389, 2003.
[2]A. Frenot and I. S. Chronakis, “Polymer nanofibers assembled by electrospinning,” Current Opinion in Colloid and Interface Science, Vol. 8, pp. 64-75, 2003.
[3]Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol. 63, pp. 2223-2253, 2003.
[4]D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” Journal of Applied Physics, Vol. 87, pp. 4531-4538, 2000.
[5]X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Letters, Vol. 2, pp. 1273-1275, 2002.
[6]I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, S. J. Lee, W. H. Park and B. M. Min, “Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, Vol. 9 (4), pp. 1106-1116, 2008.
[7]Q. P. Pham, U. Sharma and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: A review,” Tissue Engineering, Vol. 12, pp. 1197-1211, 2006.
[8]J. H. He, L. Xu, Y. Wu and Y. Liu, “Mathematical models for continuous electrospun nanofibers and electrospun nanoporous microspheres,” Polymer International, Vol. 56, pp. 1323-1329, 2007.
[9]C. V. Do, T. T. T. Nguyen and J. S. Park, “Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics,” Solar Energy Materials & Solar Cells, Vol. 104, pp. 131-139, 2012.
[10]X. L. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity,” Philosophical Magazine, Vol. 14, pp. 184-186, 1882.
[11]F. Anton, “Process and apparatus for preparing artificial threads,” US Patent Specification No. 1975504, 1934.
[12]G. I. Taylor, “Electrically driven jets,” Proceedings of The Royal Society A, Vol. 313, pp.453-475, 1969.
[13]D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, Vol. 9, pp. 216-223, 1996.
[14]H. Fong, I. Chun and D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, Vol. 40, pp. 4585-4592, 1999.
[15]D. Li and Y. Xia, “Electrospinning of nanofibers: Reinventing the wheel?,” Advanced Materials, Vol. 16, pp. 1151-1170, 2004.
[16]D. Sun, C. Chang, S. Li and L. Lin, “Near-field electrospinning,” Nano Letters, Vol. 6, pp. 839-842, 2006.
[17]G. F. Zheng, W. W. Li, X. Wang, H. Wang, D. H. Sun and L. W. Lin, “Experiment and simulation of coiled nanofiber deposition behavior from near-field electrospinning,” Nano/Micro Engineered and Molecular Systems (NEMS), pp. 284-288, 2010.
[18]G. S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin and M. J. Madou, “Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning,” Nano Letters, Vol. 11(4), pp. 1831-1837, 2011.
[19]J. B. Ballengee and P. N. Pintauro, “Morphological control of electrospun nafion nanofiber mats,” Electrochemical Society, Vol. 158, pp. 568-572, 2011.
[20]Y. K. Fuh, L. C. Lien and J. S. C. Jang, “Comparative study of polyvinylidene fluoride nanofibrous membranes prepared by continuous near-field and conventional electrospinning processes,” Micro & Nano Letters, Vol. 7, pp. 376-379, 2012.
[21]A. G. MacDiarmid, W. E. Jones Jr., I. D. Norris, J. Gao, A. T. Johnson Jr., N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki and M. Llaguno, “Electrostatically-generated nanofibers of electronic polymers,” Synthetic Metals, Vol. 119, pp. 27-30, 2001.
[22]S. Madhugiri, A. Dalton, J. Gutierrez, J. P. Ferraris and K. J. Balkus, “ Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method,” Journal of the American Chemical Society, Vol. 125, pp. 14531-14538, 2003.
[23]W. R. Caseri, H. D. Chanzy, K. Feldman, M. Fontana, P. Smith, T. A. Tervoort, J. G. P. Goossens, E. W. Meijer, A. P. H. J. Schenning, I. P. Dolbnya, M. G. Debije, M. P. de Haas, J. M. Warman, A. M. van de Craats, R. H. Friend, H. Sirringhaus and N. Stutzmann, ““(Hot-)water-proof”, semiconducting, platinum-based chain structures: processing, products, and properties,” Advanced Materials, Vol. 15, pp. 125-129, 2003.
[24]Y. Wu, Z. Dong, S. Wilson and R. L. Clark, “Template-assisted assembly of electrospun fibers,” Polymer, Vol. 51, pp. 3244-3248, 2010.
[25]F. L. Zhou, L. Hubbard, J. Eichhorn and J. M. Parker, “Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core-shell fibres,” Polymer, Vol. 52, pp. 3603-3610, 2011.
[26]楊志鴻,複合高分子氣體感測元件的電紡製作與性能改進,國立交通大學機械工程研究所,民國99年。
[27]M. Park, J. Im, J. Park and U. Jeong, “Micropatterned stretchable circuit and strain sensor fabricated lithography on an electrospun nanofiber mat,” ACS Applied Materials & Interfaces, Vol. 17, pp.8766-8771, 2013.
[28]F. Ruggieri, D. D. Camillo, L. Lozzi, S. Santucci, A. D. Marcellis, G. Ferri, L. Giancaterini and C. Cantalini, “Preparation of nitrogen doped TiO2 nanofibers by near field electrospinning (NFES) technique for NO2 sensing,” Sensors and Actuators B, Vol. 179, pp.107-113, 2013.
[29]Z. H. Liu, C. T. Pan, L. W. Lin, J. C. Huang and Z. Y. Ou, “Direct write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near field electrospinning process,” Smart Materials and Structures, Vol. 23, pp.1-6, 2014.
[30]H. Liu, C. H. Reccius and H. G. Craighead, “Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor,” Applied Physics Letter, Vol. 87, pp. 253106-253108, 2005.
[31]H. Wu, D. Lin, R. Zhang and W. Pan, “ZnO nanofiber field-effect transistor assembled by electrospinning,” Journal of the American Ceramic Society, Vol. 91, pp. 656-659, 2008.
[32]林庭宇,矽奈米線場效電晶體之研究,國立台灣師範大學光電科技研究所,民國97年。
[33]吳佳緯,鍺奈米線與矽奈米線電晶體之研製,國立中央大學電機工程研究所,民國98年。
[34]J. Y. Chen, C. C. Kuo, C. S. Lai, W. C. Chen and H. L. Chen, “Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly(3-hexylthiophene) for field-effect transistor applications,” Macromolecules, Vol. 44, pp. 2883-2892, 2011.
[35]A. Manuelli, L. Persano and D. Pisignano, “Flexible organic field-effect transistors based on electrospun conjugated polymer nanofibers with high bending stability,” Organic Electronics, Vol. 15, pp. 1056-1061, 2014.
[36]吳大誠等,奈米纖維,五南圖書出版公司,pp.66-75,2004。
[37]J. Pu, X. Yan, Y. Jiang, C. Chang and L. Lin, “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, Vol. 164, pp.131-136, 2010.
[38]N. Bu, Y. Huang, X. Wang and Z. Yin, “Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning,” Materials and Manufacturing Processes, Vol. 27, pp.1318-1323, 2012.
[39]楊賜麟,半導體物理與元件,滄海書局出版社,民國98年。
[40]阮紹偉,不同閘極材料薄膜材料電晶體之電性穩定度比較,中原大學機械工程學系,碩士論文,民國103年。
[41]J. Huang and R.B. Kaner, “Nanofiber formation in the chemical polymerization of aniline: A mechanistic study,” Angewandte Chemie International Edition, Vol. 43, pp.5817-5821, 2004.
[42]R. Gonzalez and N. J. Pinto, “Electrospun poly(3-hexylthiophene-2,5-diyl) fiber field effect transistor,” Synthetic Metals, Vol. 151, pp. 275-278, 2005.
[43]A. Luzio, E. V. Canesi, C. Bertarelli and M. Caironi, “Electrospun polymer fibers for electronic applications,” Materials, Vol. 7, pp. 906-947, 2014.
[44]N. J. Pinto, A. T. Johnson, Jr, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Applied Physics Letters, Vol. 83, pp. 4244-4246, 2003.
[45]D. Chen, S. Lei and Y. Chen, “A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms,” Sensors, Vol. 11, pp. 6509-6516, 2011.
[46]S. H. Song, H. H. Yang, C. H. Han, S. D. Ko, S. H. Lee and J. B. Yoon, “Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance,” Applied Physics Letters, Vol. 100, pp. 101603(1)-101603(3), 2012.
[47]敏石系統公司,http://www.montrol.com.tw/download_catalog.html。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top