跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林品成
研究生(外文):Pin-cheng Lin
論文名稱:以水熱法製備鈷/錳氧化物電極及其電容特性探討之研究
論文名稱(外文):Capacitive properties of cobalt/manganese oxide electrode prepared by hydrothermal method.
指導教授:陳錦毅陳錦毅引用關係
口試委員:張棋榕洪緯璿
口試日期:2015-06-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:鈷氧化物錳氧化物水熱法超級電容器雪花狀層級式堆疊結構
外文關鍵詞:Cobalt oxideManganese oxideHydrothermal processPseudocapacitorSnowflake-like hierarchical structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是要探討製備鈷/錳氧化物核/殼奈米結構的製程參數及電化學特性。以石墨塊作為基材,將製程分成三個階段,並改變其參數進行比較:第一階段以水熱法不同濃度與時間製備鈷氧化物作為模板,製備出雪花狀層級式堆疊之結構提升其反應面積;第二階段進行不同溫度與持溫時間之煆燒熱處理,比較其結晶性及表面結構,取出最佳煆燒參數;第三階段進行第二次水熱法,隨著水熱時間之改變來沉積錳氧化物,在每個階段取出最佳參數之後,製備出鈷/錳氧化物電極材料,進行XRD、SEM、TEM、EDS、XPS與電容特性分析。
在濃度Co 0.1 M沉積4 h之參數下長寬比適中,其具有優異之反應面積。在煆燒溫度300°C持溫4 h,其結晶性有明顯增加,有利於電子傳遞,在SEM分析中可以觀察到其表面有毛邊與孔洞,有助於反應面積之提升。而在錳氧化物沉積時間2 h,展現其優異之電容特性。
吾人將在三種階段取最佳參數進行不同掃描速率之分析及其他電性測試。在掃描速率25 mV/s下,其電容值可以達到196 F/g,經過10次充放電測試,雖然有些微的電壓降產生,但是其整體圖形接近對稱等腰三角形,說明其具有良好的電化學可逆性;在經過1200圈循環伏安分析後,其電容量還維持著94%左右之電容量,也可以說明其具有良好的循環穩定性。顯示鈷/錳氧化物為具有潛力與發展性之電極活性材料。
In the present study, the preparation of Co/Mn (cobalt/manganese) oxide electrode was mainly based on three steps. First, Co-oxide nanostructure was prepared on a graphite substrate by hydrothermal process as a function of hydrothermal time. Experimental results showed that the hydrothermal synthesized Co-oxide exhibited a snowflake-like morphology with a hierarchical structure. Second, the snowflake-like Co-oxide was post heated at 300°C and 350°C in an ambient atmosphere. Subsequently, the Mn-oxide was deposited onto the surface of the Co-oxide nanostructure to form a Co/Mn oxide core-shell structure by a secondary hydrothermal process. The resulting Co/Mn oxide core-shell structures were characterized using XRD, SEM, TEM, XPS and electrochemical analyses.
The effect of post heat treatment on the material characteristics and pseudocapacitive performance of the core-shell structure were investigated. The dimension of hydrothermal synthesized Co-oxide with a snowflake-like morphology varied with the post heat treatment conditions. The Co-oxide nanostructure served as a template for the growth of Mn-oxide films. A highest specific capacitance (SC) of 196 F/g and a relatively good electrochemical reversibility can be obtained when the composite electrode was calcined at 300ºC for 4 h. More than 90% capacitance retained after 1200 CV (cyclic voltammetry) cycles. The Co/Mn oxide core/shell structure exhibited a better electrochemical stability, being one of the promising active materials in pseudocapacitor applications.
誌 謝 I
中文摘要 II
Abstract III
總 目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
第一章 前言 1
第二章 文獻回顧 4
2.1 超級電容器的介紹 4
2.2 超級電容器的種類 7
2.2.1 電雙層電容器 7
2.2.2 擬電容器 8
2.3 鈷氧化物之介紹與應用 11
2.3.1 鈷氧化物之簡介 11
2.3.2 鈷氧化物應用於超級電容器 13
2.4 錳氧化物的介紹與應用 17
2.4.1 錳氧化物之簡介 17
2.4.2 錳氧化物應用於超級電容器 18
2.5 水熱法的介紹 22
2.5.1 水熱法之簡介 22
2.5.2 水熱法之原理及應用 23
2.6 超級電容器設備介紹 26
2.6.1 電解液 26
2.6.2 電極 27
2.6.3 電極材料 27
第三章 研究方法 29
3.1 電極材料製備 29
3.1.1 石墨基材前處理 29
3.1.2 水熱法沉積氧化物薄膜 30
3.2 電極材料分析 32
3.2.1 X光繞射晶體結構分析 32
3.2.2 冷場發射掃描式電子顯微鏡表面型態分析 33
3.2.3 高解析穿透式電子顯微鏡粉體結構分析 33
3.2.4 電子能譜儀鍵結分析 34
3.3 電化學電性分析 34
3.3.1 循環伏安法 34
3.3.2 計時電位法 36
第四章 結果與討論 37
4.1 鈷氧化物電極製備之檢測 37
4.1.1 鈷氧化物電極之SEM表面形態分析 37
4.1.2 鈷氧化物電極之TEM顯微結構觀察 41
4.2 鈷/錳氧化物電極隨鈷氧化物煆燒條件改變之比較 42
4.2.1 鈷/錳氧化物電極隨鈷氧化物煆燒條件改變之TGA熱重分析 43
4.2.2 鈷/錳氧化物電極隨鈷氧化物煆燒條件改變之XRD晶體結構分析 44
4.2.3 鈷/錳氧化物電極隨鈷氧化物煆燒條件改變之SEM表面形態分析 48
4.2.4 鈷/錳氧化物電極隨鈷氧化物煆燒條件改變之電性測試 51
4.3 鈷/錳氧化物複合粉體電極製備之檢測 58
4.3.1 鈷/錳氧化物複合粉體電極之XRD晶體結構分析 59
4.3.2 鈷/錳氧化物複合粉體電極之SEM表面形貌分析 60
4.3.3 鈷/錳氧化物複合粉體電極之TEM顯微結構之觀察 60
4.3.4 鈷/錳氧化物複合粉體電極之電性測試 62
4.4 鈷/錳氧化物電極材料在不同階段之分析比較 68
4.4.1 鈷/錳氧化物電極材料在不同階段之XRD晶體結構分析 68
4.4.2 鈷/錳氧化物電極材料在不同階段之SEM表面形態分析 69
4.4.3 鈷/錳氧化物電極材料在不同階段之XPS之化學組成分析 71
第五章 結論 76
參考文獻 77
J. R. Miller, P. Simon, “Electrochemical Capacitors for Energy Management,” Science Magazine, 321, 651-652 (2008).
P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors,” Nature Matericals, 7, 845-854 (2008).
C. Liu, F Li, L. P. Ma, H. M. Cheng, “Advanced materials for energy storage,” Advanced Energy Material, 22, E28-E62 (2010).
M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, “Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors,” Journal of Power Sources, 252, 98-106 (2014).
C. H. Wu, J. S. Ma, C. H. Lu, “Synthesis and characterization of nickel-manganese oxide via the hydrothermal route for electrochemical capacitors,” Current Applied Physics, 12, 1190-1194 (2012).
P. Kurzweil, “Electrochemical Double-Layer Capacitors,” Encyclopedia of Electrochemical Power Sources, 607-633 (2009).
R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica Acta 2483-2498 (2000).
I. Tanahashi, A. Yoshida, A. Nishino, “Preparation and Characterization of Activated Carbon Tablets for Electric Double Layer Capacitors” Bulletin of the Chemical Society of Japan, 63, 2755-2758 (1990).
H. A. Andreas, B. E. Conway, “Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs,” Electrochimica Acta, 51, 6510-6520 (2006).
I. H. Kim, K. B. Kim, “Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications,” Journal of The Electrochemical Society, 153 [2], A383-A389 (2006).
H. Kim, B. N. Popov, “Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method,” 104, 52-61 (2002).
J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Electronics and Power Sources, 142, 2699-2703 (1995).
C. Guan, X. Xia, N. Meng, Z. Zeng, X. Cao, C. Soci, H. Zhang, H. J. Fan, “Hollow core–shell nanostructure supercapacitor electrodes: gap matters,” Energy and Environmental Science, 5, 9085-9090 (2012).
Y. Q. Zhang, X. H. Xia, J. P. Tu, Y. J. Shi, X. L. Wang, C. D. Gu, “Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors,” Journal of Power Sources, 199, 413-417 (2012).
X. Zhao, L. Zhang, S. Murali, M. D. Stoller, Q. Zhang, Y. Zhu, R. S. Ruoff, “Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical Capacitors,” ACS nano, 6, 5404-5412 (2012).
Z. Wang, C. Ma, H. Wang, Z. Liu, Z. Hao, “Facilely synthesized Fe2O3-graphene nanocomposite as novel electrode materials for supercapacitors with high performance,” Journal of Alloys and Compounds, 552, 486-491 (2013).
Q. Qu, Y. Zhu, X. Gao, Y. Wu, “Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High Performance Anode Material for Supercapacitors,”Advanced Energy Materials, 2, 950-955 (2012).
D. P. Dubal, G. S. Gund, R. Holze, C. D. Lokhande, “Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors,” Journal of Power Sources, 242, 687-698 (2013).
R. N. Reddy, R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material,” Journal of Power Sources, 132, 315-320 (2004).
A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources, 91, 37-50 (2000).
C. Yuan, H. Lin, H. Lu, E. Xing, Y. Zhang, B. Xie, “Anodic deposition and capacitive property of nano-WO3 H2O/MnO2 composite as supercapacitor electrode material,” Materials Letters, 148, 167-170 (2015).
C. H. Lai, C. K. LIN, S. W. Lee, H. Y. Li, J. K. Chang, M. J. Deng, “Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications,” Journal of Alloys and compounds. 536S, S428-S431 (2012).
Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, “Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors,” Journal of Power Sources, 279, 138-145 (2015).
P. Cao, L. Wang, Y. Xu, Y. Fu, X. Ma, “Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor,” Electrochinica Acta, 157, 359-368 (2015).
N. Wang, Y. Zhang, T. Hu, Y. Zhao, C. Meng, “Facile hydrothermal synthesis of ultrahigh-aspect-ratio V2O5 nanowires for high-performance supercapacitors,” Current Applied Physics, 15, 493-498 (2015).
Y. Liu, D. He, H. Wu, J. Duan, Y. Zhang, “Hydrothermal Self-assembly of Manganese Dioxide/Manganese Carbonate/Reduced Graphene Oxide Aerogel for Asymmetric Supercapacitors” Electrochimica Acta, 164, 154-162, (2015)
L. F. Chen, Z. Y. Yu, X. Ma, Z. Y. Li, S. H. Yu, “In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors,” Nano Energy 9, 345-354 (2014).
J. Jiang, L. Bao, Y. Qiang, Y Xiong, J. Chen, S. Guan, J. Chen, “Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors,” Electrochimica Acta, 158, 229-236 (2015).
P. Lorkit, M. Panapoy, B. Ksapabutr, “Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process,” Energy Procedia, 56, 466-473 (2014).
Y. Q. Wu, X. Y. Chen, P. T. Ji, Q. Q. Zhou, “Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors,” Electrochimica Acta, 56, 7517-7522 (2011).
B. Wang, K. Konstantiov, D. Wexler, H. Liu, G. Wang, “Synthesis of nanosized vanadium pentoxide/carbon composites by spray pyrolysis for electrochemical capacitor application,” Electrochimica Acta, 54, 1420-1425 (2009).
L. S. Godse, P. B. Karandikar, M. Y. Khaladkar, “Study of Carbon Materials and Effect of Its Ball Milling, on Capacitance of Supercapacitor,” Energy Procedia, 54, 302-309 (2014).
R. J. Brodd, K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller, E. Takeuchi, “Batteries, 1977 to 2002,” Journal of Electrochemical Socirty 151 [3], K1-K11 (2004).
C. Peng, S. Zhang, D. Jewell, G. Z. Chen, “Carbon nanotube and conducting polymer composites for supercapacitors,” Progress in Natural Science, 18, 777-788 (2008).
D. G. Ivey, “Electron microscopy techniques applied to materials for energy storage and conversion,” Microscopy: Science, Technology, Applications and Education, 1219-1231 (2010).
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Journal of Hydrogen Energy, 34, 4889-4899 (2009).
S. Faraji, F. N. Ani, “The development supercapacitor from activated carbon by electroless plating—A review,” Renewable and Sustainable Energy Reviews, 42, 823-834 (2015).
R. Drummond, D. A. Howey, S. R. Duncan, “Low-order mathematical modelling of electric double layer supercapacitors using spectral methods,” Journal of Power Sources, 277, 317-328 (2015).
J. H. Park, O. O. Park, “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes,” Journal of Power Sources, 111, 185-190 (2002).
林宜慶,“超級電容器技術發展與應用趨勢分析(Part 1)”,車輛中心國際合作發展部。
S. Mitra, S. Sampath, “Electrochemical Capacitors Based on Exfoliated Graphite Electrodes,” Electrochemical and Solid-State Letters, 7 [9], A264-A268 (2004).
E. Conway, “Electrochemical Super capacitor,” Kluwer-Plenum, New York (1999).
張仍奎,“超高電容器錳氧化物電極之電化學製備法、材料特性以及擬電容行為”,國立成功大學材料科學與工程學系博士論文,2005。
陳宜倫,“以陽極沉積法製備之氧化錳電極材料特性與擬電容性質”,國立成功大學材料科學及工程學學系碩士論文,2004。
C. Dong, X. Xiao, G. Chen, H. Guan, Y Wang, “Hydrothermal synthesis of Co3O4 nanorods on nickel foil,” Materials Letters, 123, 187-190 (2014).
Y. Li, K. Huang, Z. Yao, S Liu, X. Qing, “Co3O4 thin film prepared by a chemical bath deposition for electrochemical Capacitors,” Electrochimica Acta, 56, 2140-2144 (2011).
F. Wang, L. Liang, L. Shi, M. Liu, J. Sun, “CO2 assisted synthesis of highly dispersed Co3O4 nanoparticles on mesoporous carbon for lithium ion battery,” Journal of Alloys and Compounds, 633, 65-70,(2015).
R. S. R. Majid, “Electrodeposited Mn3O4-NiO-Co3O4 as a composite electrode material for electrochemical capacitor,” Electrochimica Acta, doi.
X. H. Xia, J. P. Tu, J. Zhang, J. Y. Xiang, X. L. Wang, X. B. Zhao, “Fast electrochromic properties of self-supported Co3O4 nanowire array film,” Solar Energy Materials and Solar Cells, 94, 386-389 (2010).
T. Liu, Y. Li, G. Quan, P. Dai, X. Yu, M. Wu, Z. Sun, G. Li, “Magnetic-field-assisted preparation of one-dimensional(1-D) wire-like NiO/Co3O4 composite for improved specific capacitance and cycle ability,” Materials Letters, 139, 208-211 (2015).
S. Vetter, S. Haffer, T. Wagner, M. Tiemann, “Nanostructured Co3O4 as a CO gas sensor: Temperature-dependent behavior,” Sensors and Actuators B: Chemical, 206, 133-138 (2015).
K. Wang, R. Wang, H. Li, H. Wang, X. Mao, V. Linkvo, S. Ji, “N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media,” Journal of Hydrogen Energy, 40, 3875-3882 (2015).
C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, “A reduced graphene oxide/Co3O4 composite for supercapacitor electrode,” Journal of Power Sources, 226, 65-70 (2013).
F. Bødker, S. Mørup, S. W. Charles, S. Linderoth, “Surface oxidation of cobalt nanoparticle studied by Mössbauer spectroscopy,” Journal of Magnetism and Magnetic Materials 196, 18-19 (1999).
汪成斌、林鴻冠、畢家麟、高雪君,“高價氧化鈷的特性鑑定及其對一氧化碳吸附與氧化之研究”,國防大學中正理工學院應用化學系,2004。
Y. Jiang, Y. Wu, B. Xie, Y. Xie, Y. Qian, “Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation,” Materials Chemistry and Physics, 74, 234-237 (2002).
M. Liao, Y. Liu, Z. Hu, Q. Yu, “Novel morphologic Co3O4 of flower-like hierarchical microspheres as electrode material for electrochemical capacitors,” Journal of Alloys and Compounds, 562, 106-110 (2013).
馮毅之,“電泳披覆技術製備二氧化鈦薄膜及其特性研究”,逢甲大學材料科學研究所碩士論文,2003。
D. Zhang, X. Li, X. Guo, C. Lai, Fabrication of cobalt oxide (Co3O4) coating by electrophoretic deposition,” Materials Letters, 126, 211-213 (2014).
J. Guo, L. Chen, X. Zhang, B. Jiang, L. Ma, “Sol-gel synthesis of mesoporous Co3O4octahedra towardhigh-performance anodes for lithium-ion batteries,” Electrochimica Acta, 129, 410-415 (2014).
G. L. Messing, S. C. Zhang, G. V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolysis,” Journal of American Ceramic Society, 76, 2707-2726 (1993).
R. C. Ambare, S. R. Bharadwaj, B. J. Lokhande, “Electrochemical characterization of Mn: Co3O4 thin films prepared by spray pyrolysis via aqueous route,” Current Applied Physics, 14, 1582-1590 (2014).
M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, “Facile synthesis of hierarchical Co3O4@MnO2 coreeshell arrays on Ni foam for asymmetric supercapacitors,” Journal of Power Sources, 252, 98-106 (2014).
L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, “Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline Aqueous Solution,” Journal of The Electrochemical Society, 149 [4], A504-A507 (2002).
李柏潔,“奈米結構之Au/MnO2複合陰極觸媒材料”,國立中央大學化學工程與材料工程學系碩士論文,2013。
K. Wang, Z. Shi, Y. Wang, Z. Ye, H. Xia, G. Liu, G. Qiao, “Co3O4 nanowires@MnO2 nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: The influence of morphology on performance,” Journal of Alloys and Compounds, 624, 85-93 (2015).
Z. Li, Z. Liu, B. Li, D. Li, Q. Li, H. Wang, “MnO2 nanosilks self-assembled micropowders: Facile one-step hydrothermal synthesis and their application as supercapacitor electrodes,” Journal of the Taiwan Institute of Chemical Engineers, 45, 2995-2999 (2014).
Y. H. Chu, C. C. Hu, K. H. Chang, “Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition,” Electrochimica Acta, 61, 124-131 (2012).
K. Byrappa, M. Techology, “Handbook of Hydrothermal Technology,” 1-49 (2013).
K. Byrappa, Hydrothermal growth of crystals, in: D. T. J. Hurle (Ed.) , Handbook of Crystal Growth, Elsevier Science B. V., England, 465-562 (1994).
M. M. Lencka, A. Anderko, R. E. Riman, “Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modeling and experimental synthesis,” Journal of American Ceramic Society, 78, 2609-2618 (1995).
J. O. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, “Kinetics and mechanisms of hydrothermal synthesis of barium titanate,” Journal of American Ceramic Society 79, 2929-2939 (1996).
X. W. Huang, Z. W. Xie, X. Q. He, H. Z. Sun, C. Y. Tong, D. M. Xie, “Electric Double Layer Capacitors Using Activated Carbon Propared from Pyrolytic Treatment of Suger as Their Electrodes,” Synthetic Metals 135-136, 235-236 (2003).
E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii, “Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere,” Carbon, 44, 983-988 (2006).
B. Fang, L. Binder, “Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor,” Electrochimica Acta, 52, 6916-6921 (2007).
W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, “Superior electric double layer capacitors using ordered mesoporous carbons,” Carbon 44, 216-224 (2006).
Y. Zhao, M. B. Zhang, J. M. Cao. X. F. Ke, J. S. Liu, Y. P. Chen, J. Tao, “Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors,” Materials Letters, 62, 548-551 (2008).
K. Okajima, A. Ikeda, K. Kamoshite, M. Sudoh, “High rate performance of highly dispersed C60 on activated carbon capacitor,” Electrochimica Acta, 51, 972-977 (2005).
B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, “Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors,” Electrochimica Acta, 52, 4595-4598 (2007).
T. Katakabe, T. Kaneko, M. Watanabe, T. Fukushima, T. Aida, “Electric Double-Layer Capacitors Using “Bucky Gels” Consisting of an Ionic Liquid and Carbon Nanotubes,” Journal of Electrochemical Society, 152 [10], A1913-A1916 (2005).
Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamur, M. Ishikawa, “Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance,” Electrochemical and Solid-State Letters, 10 [4], A106-A110 (2007).
W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu, “Fabrication of Thin-Film, Flexible, and Transparent Electrodes Composed of Ruthenic Acid Nanosheets by Electrophoretic Deposition and Application to Electrochemical Capacitors,” Journal of The Electrochemical Society, 153 [2], A255-A260 (2006).
W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu, “Electrochemical Capacitor Behavior of Layered Ruthenic Acid Hydrate,” Journal of The Electrochemical Society, 151 [8], A1181-A1187 (2004).
N. A. Choudhury, A. K. Shukla, S. Sampath, S. Pitchumani, “Cross-Linked Polymer Hydrogel Electrolytes for Electrochemical Capacitors,” Journal of The Electrochemical Society, 153 [3], A614-A620 (2006).
G. Bo, Z. Xiaogang, Y. Changzhou, L. Juan, Y. Long, “Amorphous Ru1−yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors,” Electrochimica Acta, 52, 1028–1032 (2006).
X. H. Yang, Y . G. Wang, H. M. Xiong, Y. Y. Xia, ” Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor,” Electrochimica Acta, 53, 752–757 (2007).
T. Brousse, M. Toupin, D. Be´langer, “A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte,” Journal of The Electrochemical Society, 151 [4], A614-A622 (2004).
S. W. Hwang, S. H. Hyun, “Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors,” Journal of Power Sources, 172, 451–459 (2007).
D. D. Zhao, S. J. Bao, W. J. Zhou, H. L. Li, “Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor,” Electrochemistry Communications, 9, 869–874 (2007).
G. H. Yuan, Z. H. Jiang, A. Aramata, Y. Z. Gao, “Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide,” Carbon, 43, 2913–2917 (2005).
Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu, Y. Kuang, “Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites,” Electrochimica Acta, 52, 2959–2965 (2007).
H. Liu, P. He, Z. Liu, Y. Liu, J. Li, “A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte,” Electrochimica Acta, 51, 1925–1931 (2006).
C. Chen, D. Zhao, X. Wang, “Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride,” Materials Chemistry and Physics, 97, 156–161 (2006).
W. Liu, Y. Soneda, M. Kodama, J. Yamashita, H. Hatori, “Low-temperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area,” Carbon, 45, 2759–2767 (2007).
D. Choi, P. N. Kumta, “Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors,” Journal of The Electrochemical Society, 153 [12], A2298-A2303 (2006).
Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G. X. Wang, H. K. Liu, “Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors,” Journal of Power Sources, 162, 1451–1454 (2006).
A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, “Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte,” Electrochimica Acta, 50, 2233–2237 (2005).
E. C. Rios, A. V. Rosario, R. M. Q. Mello, L. Micaroni, “Poly(3-methylthiophene)/MnO2 composite electrodes as electrochemical capacitors,” Journal of Power Sources, 163, 1137–1142 (2007).
B. Muthulakshmi, D. Kalpana, S. Pitchumani, N. G. Renganathan, “Electrochemical deposition of polypyrrole for symmetric supercapacitors” Journal of Power Sources, 158, 1533–1537 (2006).
K. R. Prasad, N. Miura, “Polyaniline-MnO2 Composite Electrode for High Energy Density Electrochemical Capacitor,” Electrochemical and Solid-State Letters, 7 [11], A425-A428 (2004).
Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun, ” Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor,” Sensors and Actuators B: Chemical, 186, 172-179 (2013).
A. Yu, A. Sy, A. Davies, “Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor” 161, 2049-2054 (2011).
J. Wei, N. Nagarajan, I. Zhitomirsky, “Manganese Oxide Films for Electrochemical Supercapacitor,” J. Materials Processing Technology 186, 356-361 (2007).
H. Y. Lee, J. B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5•nH2O in Potassium Chloride Aqueous Solution,” J. Solid State Chemistry, 148, 81-84 (1999).
L. M. Chen, Q. Y. Lai, Y. J. Hao, Y. Zhao, X. Y. Ji, “Investigations on Capacitor Properties of the AC/V2O5 Hybrid Supercapacitor in Various Aqueous Electrolytes,” J. Alloys and Compounds, 467, 465-471 (2009).
汪建民,材料分析,中國材料科學年會,1998。
K. Wang, M. Zheng, X. Shi, Z. Lin, H. Wang, Y. Lu, “Glucose–ethanol-assisted synthesis of amorphous CoO@C core–shell composites for electrochemical capacitors electrode,” Chemical Engineering Journal, 266, 141-147 (2015).
M. A. Stranick, “MnO2 by XPS,” Surface Science Spectra, 31, 31-38 (1999).
M. M. Rahman, S. B. Khan, G. Gruner, M. S. Al-ghamdi, M. A. Daous, A. M. Asiri, “Chloride ion sensors based on low-dimensional a-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I–V technique,” Electrochimica Acta, 103, 143-150 (2013).
XPS handbook.
C.V. Schenck, J.G. Dillard, J.W. Murray, Surface analysis and the adsorption of Co(II) on goethite, Journal of Colloid Interface Science 95, 398–409 (1983).
N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, et al., Co3O4 nanocages for high-performance anode material in lithium-ion batteries, Journal of Physical Chemistry C 116, 7227–7235 (2012).
W. S. Epling, G. B. Hoflund, J. F. Weaver, “Surface Characterization Study of Au/r-Fe2O3 and Au/Co3O4 Low-Temperature CO Oxidation Catalysts,” Journal of Physical Chemical, 100, 9929-9934 (1996).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊