跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王子瑜
研究生(外文):Tzu-yu Wang
論文名稱:以刮塗法自製氣體擴散層並探討與應用於質子交換膜燃料電池
論文名稱(外文):Fabricated Gas Diffusion Layer by blading and Investigate Performance of Proton Exchange Membrane Fuel Cells
指導教授:柯澤豪柯澤豪引用關係
口試委員:邱國峰郭文雄
口試日期:2015-06-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:燃料電池氣體擴散層微孔層刮塗法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣體擴散層( Gas Diffusion Layer, GDL )由碳纖維布或是碳纖維紙製成,為質子交換膜燃料電池( Proton Exchange Membrane Fuel Cell, PEMFC )中主要的元件之一,氣體擴散層本身需要具備有優異的導電度、透氣度、耐腐蝕性與強度來克服PEMFC中嚴苛的環境,為了要改善燃料電池在反應過程中的水氾濫,會在GDL上披覆微孔層(Micro Porous Layer, MPL ),MPL漿料主要為碳黑、鐵氟龍( Polytetrafluoroethene, PTFE )、分散劑等。目前常見的微孔層披覆有噴塗、刮塗、網印等製程。本研究主要以刮塗法披覆MPL在碳布進行二部份的相關研究與討論。
第一部份,改變不同的鐵氟龍/碳黑比例自製氣體擴散層,並探討不同的鐵氟龍/碳黑比例對於電池效能的影響,適當的比例會使得MPL的塗佈量較為完整,較適合應用於刮塗法,有助於GDL的疏水性提升。在鐵氟龍/碳黑重量比例為18時,在負載0.3 V時,電流密度為870 mA/cm2。
第二部份,將微孔層漿料以不同塗佈高度(75 µm,100 µm,350 µm)塗佈在碳布基材上自製氣體擴散層,並探討不同塗佈高度對於電池效能的影響。塗佈高度越高會導致透氣度下降。根據最佳參數,當塗佈高度為100 µm,在負載0.3 V時,電流密度為629 mA/cm2。
Gas diffusion layer (GDL) is make by carbon paper or carbon cloth, which is one of the important components of proton exchange membrane fuel cell (PEMFC). GDL have outstanding conductivity, air permeability, corrosion resistance, and mechanical strength, so it can be endure for PEMFC’s environment. During cell operating, GDL is coated by micro porous layer (MPL) to improve the water flooding, MPL slurry is consist of carbon black, Teflon, dispersant. MPL coating process including spraying, blading, screen printing in currently. This study discussed the manufacturing process of the GDL by blading MPL on carbon cloth substrate with two parts.
In part one, the GDL coated with MPL was adjust different Teflon/ carbon black ratio and investigated the effect of different Teflon/carbon black on fuel cell performance. An appropriate ratio cause the MPL loading more complete and improve the GDL’s hydrophobic. In addition to appropriate ratio can be suitable on blading. In Teflon/carbon black ratio at 18, The best fuel cell performance was 870 mA/cm2 at a load of 0.3 V .
In part two, using different coating gaps (75 µm, 100 µm, 350 µm) to blade the MPL slurry on carbon cloth. We examined the effect of different coating gaps of blade on fuel cell. The higher coating gap cause GDL’s air permeability. The best fuel cell performance was 629 mA/cm2 at a load of 0.3 V with the coating gap for 100 µm.
摘要……. Ⅰ
Abstract.. Ⅱ
圖目錄… Ⅲ
表目錄... Ⅳ
第一章 前言 1
第二章 理論依據與回顧 5
2.1 基本理論 5
2.1.1 碳材料科學導論 5
2.1.2 燃料電池原理 11
2.1.3 燃料電池之熱力學探討 15
2.1.4 燃料電池之極化探討 23
2.1.5 燃料電池之效率探討 28
2.1.6 氣體擴散層主要特性 30
2.2 碳/碳複合材料 31
2.2.1 碳/碳複合材料的製造方法 31
2.2.2 高分子聚合物的選用 31
2.2.3 PAN系碳纖維及其不織布碳化行為 34
2.2.4 熱處理溫度與導電導熱性質之關係 40
2.2.5 碳纖維紙製程技術分析 41
2.3 微孔層特性 43
2.3.1微孔層之基本特性 43
2.3.2 微孔層之疏水性 45
2.3.3 碳黑之基本性質 47
2.3.4 疏水劑之簡介 48
2.3.5 PTFE_TE-3893之基本特性 50
2.3.6 異丙醇之基本特性 50
2.4 刮塗法 53
第三章 實驗流程 56
3.1 型號規格 56
3.2 實驗材料 57
3.3 製程設備 58
3.4 實驗步驟 59
3.4.1 碳布基材製備流程 59
3.4.2 氣體擴散層的製備與分析 60
3.5 實驗材料製備 61
3.5.1 碳纖維氈之製備 61
3.5.2 微孔層之製備 61
3.6 分析測試 64
3.6.1 塗佈量測試 64
3.6.2 厚度測試 64
3.6.3 表面電阻測試 65
3.6.4 穿透電阻測試 66
3.6.5 透氣度測試 67
3.6.6 水接觸角測試 68
3.6.7 掃描式電子顯微鏡分析 69
3.6.8 燃料電池測試 70
第四章 結果與討論 75
4.1 鐵氟龍/碳黑重量比例影響 75
4.1.1 塗佈量與厚度分析 75
4.1.2 掃描式電子顯微鏡分析 78
4.1.3 透氣度分析 82
4.1.4 表面電阻分析 84
4.1.5 接觸角分析 86
4.1.6 燃料電池效能分析 88
4.2 塗佈器高度選用 90
4.2.1 塗佈量與厚度分析 90
4.2.2 掃描式電子顯微鏡分析 92
4.2.3 透氣度分析 96
4.2.4 表面電阻分析 98
4.2.5 穿透電阻分析 100
4.2.6 接觸角分析 102
4.2.7 燃料電池效能分析 104
第五章 結論 106
第六章 參考文獻 113
致謝 117
[1].E.M. do Sacramento, L.C. de Lima, C.J. Oliveira, T. Nejat Veziroglu,INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 33 (2008), P.2132–2137.
[2].http://zh.wikipedia.org/wiki/%E8%83%BD%E9%87%8F%E8%BD%89%E6%8F%9B%E6%95%88%E7%8E%87
[3].黃鎮江,燃料電池修訂版,全華科技圖書股份有限公司,2005。
[4].衣寶廉,“燃料電池–原理與應用”,五南出版社,2005。
[5].R. Ahluwalia, X. Wang, Journal of Power Sources,177 (2008), P. 167–176.
[6].E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu,Y.Yang, Cost Analysis of PEM Fuel Cell Systems for Transportation, NREL/SR-560-39104, September (2005).
[7].M.V. Williams, E. Begg, L. Bonville, H. Russell Kunz, J.M. Fenton,J. Electrochem. Soc., 8 (2004), A1173–A1180.
[8].R.B. Mathur, Priyanka H. Maheshwari,T.L. Dhami,R.K. Sharma,C.P. Sharma, Journal of Power Sources, 161 (2006), P. 790–798.
[9].F. Mishra, F. Yang, R. Pitchumani, J. Fuel Cell Sci. Technol., 1 (2004), P. 2–9.
[10].劉璟翰,博士論文,逢甲大學材料系, 440.2 035D 98-2, (2009)
[11].廖元楷,博士論文,逢甲大學材料系, 440.2 035D 98-4, (2009)
[12].林瑞祥,博士論文,逢甲大學材料系, 440.2 035D 97-1, (2008)
[13].黃建鈞,碩士論文,逢甲大學材料系, 440.2 035M 97-8, (2008)
[14].洪志榮,碩士論文,逢甲大學材料系, 440.2 035M 97-17, (2008)
[15].張塑益,碩士論文,逢甲大學材料系, 440.2 035M 99-14, (2010)
[16].王健勳,碩士論文,逢甲大學材料系, 440.2 035M 101-23, (2012)
[17].林怡成,碩士論文,逢甲大學材料系, 440.2 035M 102-9, (2013)
[18].稻垣道夫、大谷杉郎、賴耿陽,〝碳材料碳纖維工學〞復漢出版社, 1993年。
[19].許明發譯,〝日本碳纖維最近之發展〞, 中華民國尖端材料科技協會。
[20].M.Z. Wang, New Carbon Materials, 13 (1998), P. 79.
[21].A. Celzard, J.F. Marˆeche´, F. Payot, D. Be´gin, G. Furdin, Carbon, 38 (2000), P. 1207–1215.
[22].K.A. Trick, T.E. Saliba, Carbon, 33 (1995), P. 1509–1515.
[23].R. Bacon, Chemistry and Physics of Carbon, Marccel Dekker, 9 (1973), P. 1.
[24].碳材料化學與工學,復漢出版社,賴耿陽編著;名過九十年九月。
[25].C.P. Reghunadhan Nair, Prog. Polym. Sci., 29 (2004), P. 401–498.
[26].C.L. Liu, W.S. Dong, J.R. Song, L. Liu, Materials Science and Engineering A, 459 (2007), P. 347–354.
[27].V.D. Chekanova, A.S. Fialkov, Russ. Chem. Rev., 40 (1971), P. 413.
[28].A. Bıyıkoglu, International Journal of Hydrogen Energy, 30 (2005), P. 1181–1212.
[29].Colleen Spiegel, PEM Fuel Cell Modeling and Simulation Using Matlab, Chapter 1 - An Introduction to Fuel Cells, (2008), P. 1–14.
[30].M.V. Williams, H.R. Kunz, J.M. Fenton., Journal of Power Sources, 135 (2004), P. 122–134.
[31].Ellen Ivers-Tiffée, Anil V. Virkar, High Temperature and Solid Oxide Fuel Cells–Fundamentals, Design and Applications, (2003), P. 229–260.
[32].K.T. Jeng, S.F. Lee, G.F. Tsai, C.H. Wang, Journal of Power Sources, 138 (2004), P.41–50.
[33].W.R. Baumgartner, P. Parz, S.D. Fraser, E. Walln¨ofer, V. Hacker, Journal of Power Sources, 182 (2008), P. 413–421.
[34].M.G. Santarelli, M.F. Torchio, M. Calı`, V. Giaretto, International Journal of Hydrogen Energy, 32 (2007), P. 710–716.
[35].Y. Bultel, K. Wiezell, F. Jaouen, P. Ozil, G. Lindbergh, Electrochimica Acta, 51 (2005), P. 474–488.
[36].W.W. Yang, T.S. Zhao, Y.L. He, Journal of Power Sources, 185 (2008), P. 765–775.
[37].J.C. Shyu, K.L. Hsueh, F. Tsau, Energy Conversion and Management, 52 (2011), P. 3415–3424.
[38].D. Gervasio, Fuel Cells – Proton-Exchange Membrane Fuel Cells, Gas Diffusion Layers, (2009).
[39].H.S. Chu, C. Yeh, F. Chen, Journal of Power Sources, 123 (2003), P. 1–9.
[40].A. El-kharouf, B.G. Pollet – ‘Gas Diffusion Media and their Degradation’
[41].L. Cindrella, A.M. Kannan, J.F. Lin, K. Saminathan, Y. Ho, C.W. Lin, J. Wertz., Journal of Power Sources, 194 (2009), P. 146–160.
[42].監修本間琢也,王建義編譯,圖解燃料電池百科,全華科技圖書股份有限公司,2005。
[43].G. M. Savage, Composites Science and Technology, 51 (1994), P. 463–464.
[44].A. Fischer, J. Jindra, H. Wendt, J. Appl. Electrochem, 28 (1998), P. 277.
[45].C.S. Kong, D.Y. Kim, H.K. Lee, Y.G. Shul, T.H. Lee, J. Power Sources, 108 (2002), P. 185.
[46].Z. Qi, A. Kaufman, J. Power Sources, 109 (2002), P.38.
[47].L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Electrochim. Acta., 43 (1998), P. 3675.
[48].L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, J.Power Sources, 86 (2000), P. 250.
[49].F. Gao, J.W. Patrick, A. Walker, Carbon, 32 (1994), P. 1215–1222.
[50].Z. Kang, R. Johnson, J. Mi, S. Bondi, M. Jiang, J. Gillespie, W.J. Lackey, S. Stock, Karren More., Carbon, 42 (2004), P. 2721–2727.
[51].J. Rodríguez-Mirasol, P.A. Thrower, L.R. Radovic, Carbon, 31 (1993), P. 789–799.
[52].Thomas CR., Essentials of Carbon-Carbon Composites. Cambridge: The Royal Society of Chemistry, 20 (1993).
[53].Yamashita, a Ouchi K.A study on carbonization of phenol-formaldehyde resin labeled with deuterium and 13C, Carbon, 19(2) (1981), P. 89–94.
[54].L and M, Mechanical-properties and chemistry of carbonization of phenol-formaldehyde resin, Carbon, 24(5) (1986), P. 575–580.
[55].S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee, Electrochim. Acta, 43 (1998), P.3693.
[56].E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochim. Acta, 46 (2001), P. 799.
[57].Trick KA, and Saliba TE, Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite, Carbon, 33 (11) (1995), P. 1509–1515.
[58].ICCTC, Carbon, 25 (1987), P. 449.
[59].N. Grassie, R. Mcguchan, European. Polymer, 7, P.1357.
[60].Fitzer, E., Miller. D J., Carbon, 13 (1975), P. 63.
[61].Watt. W., Nature (London), 30 (1969), P. 265–266.
[62].Hurley, S. A., Pult. P, & Marrel, C. S., J. Poly. Sci. Al, 10 (1969), P. 1243.
[63].P.J. Goodheu, A.J. Clark, J.E. Bailey, Materials Science and Engineering, 17 (1975), P. 3.
[64].T.H. KO, Y. K. LIAO, “碳纖維紙之製造方法及其組成結構”,中華民國專利:I279471.
[65].J.H. Nam, M. Kaviany, Int.J. Heat Mass Transfer, 46 (2003), P. 4595-4611.
[66].J. T. Gostick, M. A. Ioannidis, M. W. Fowler, M. D. Pritzker,Electrochemistry Communications, 11 (2009), P. 576-579.
[67].Y. W. Chen-Yang , T. F. Hung, J. Huang, F. L. Yang, Journal of Power Sources, 173 (2007), P. 183-188.
[68].T. Yang , P. Shi, C. Du, Electrochimica Acta, 51 (2006), P. 5618-5625.
[69].G. G. Park, Y. J. Sohn, T. H. Yang, Y. G. Yoon, W. Y. Lee, C. S. Kim, Journal of Power Sources, 131 (2004), P. 182-187.
[70].S. Park, J. W. Lee, B. N. Popov, Journal of Power Sources, 177 (2008), P. 457-463.
[71].http://www.cabot-corp.com,Cabot 公司提供。
[72].http://zh.wikipedia.org/wiki/%E9%90%B5%E6%B0%9F%E9%BE%8D
[73].http://www2.dupont.com/Teflon_Industrial/en_US/assets/downloads/k15314.pdf,杜邦公司提供。
[74].http://zh.wikipedia.org/zh-tw/2-%E4%B8%99%E9%86%87
[75].J. H. Tian, Z. Y. Shi, Z. Q. Shan, Energy Conversion and Management, 49 (2008), P. 1500-1505.
[76].S. Park, J. W. Lee, B. N. Popov, Journal of Power Sources, 163 (2006), P. 357-363.
[77].J. F. Lin, X. Liu, A. Adame, R. Villacorta, J. Wertz, R. Ahmad, M. Thommes, A. M. Kannan, Electrochimica Acta 56 (2011), P. 1591-1596.
[78].C. J. Tseng, S. K. Lo, Energy Conversion and Management, 51 (2010), P. 677-684.
[79].G. Velayutham, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 36 (2011), P. 14845-14850.
[80].Haolin Tang , Shenlong Wang, Mu Pan, Runzhang Yuan,Journal of Power sources,166(2007)P.41-46
[81].A.M. Kannan, S. Sadananda, D. Parker, L. Munukutla, J. Wertz, M. Thommes,Journal of Power sources,178(2008)P.231-237
[82].Ai Lien Ong,Aldo Bottino ,Gustavo Capannelli,Antonio Comite, Journal of Power Sources,183(2008)P.62–68
[83].Hao-Ming Chang,Min-Hsing Chang, Journal of Fuel Cell Science and Technology,10(2013)P.1-6
[84].Paola Gallo Stampino,Cinzia Cristiani,Giovanni Dotelli,Luca Omati,Luca Zampori,Renato Pelosato,Catalysis Today,147( 2009 )P.30–35
[85].P. Gallo Stampino,L. Omati,C. Cristiani,G. Dotelli ,Fuel Cell,10( 2010 )P.270 – 277
[86].S.Latorrata,P.Gallo Stampino,E.Amici,Pelosato,C.Cristiani,G.Dotelli, Solid State Ionics,216 (2012)P.73–77
[87].Jian Chen,Haifeng Xu,Huamin Zhang,Baolian Yi, Journal of Power sources,182(2008)P.531-539
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊