跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳婷婷
論文名稱:藉由超音波霧化熱裂解沉積技術研製具有氧化鎂閘極介電層之氮化鎵/氮化鋁鎵/氮化鎵金屬-氧化物-半導體高電子遷移率電晶體
論文名稱(外文):Investigations on MgO-Dielectric GaN/AlGaN/GaN MOS-HEMT by Using Ultrasonic Spray Pyrolysis Deposition Technique
指導教授:李景松劉漢胤
口試委員:許渭州李景松吳昌崙劉漢胤
口試日期:2015-07-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:80
中文關鍵詞:超音波霧化熱裂解氧化鎂氮化鎵/氮化鋁鎵/氮化鎵
外文關鍵詞:Ultrasonic spray pyrolysis depositionmagnesium dioxideGaN/AlGaN/GaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本實驗藉由超音波霧化熱裂解沉積研製具有氧化鎂閘極介電層之氮化鎵/氮化鋁鎵/氮化鎵金屬-氧化物-半導體閘極結構之高電子遷移率電晶體。由於利用超音波霧化熱裂解沉積高介電常數氧化鎂當閘極介電層,因而增強閘極絕緣能力與表面鈍化效果,進而有效地降低閘極漏電流。
經由製程最佳化條件下之傳統蕭特基閘極與氧化鎂閘極介電層之氮化鎵/氮化鋁鎵/氮化鎵金屬-氧化物-半導體閘極結構之高電子遷移率電晶體,元件之直流特性分別為: 最大飽和電流密度 IDS, max (500 mA/mm、681 mA/mm),零閘極偏壓飽和電流 IDSS0 (289 mA/m、329 mA/mm),最大外質轉導 gm, max (120 mS/mm、112 mS/mm),閘極漏電流 Ig (6.85 × 10-3 mA/mm、3.73 × 10-5 mA/mm),閘極-汲極兩端崩潰電壓 BVGD (-104 V、-123 V)。
因此,實驗結果顯示,藉由超音波霧化熱裂解沉積高介電常數氧化鎂閘極介電層結構之氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體,成功改善元件整體之直流特性。
The thesis investigates MgO-dielectric GaN/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) by using the ultrasonic spray pyrolysis deposition (USPD) technique. Due to the enhanced gate insulation and surface passivation, the gate leakage current has been effectively reduced by depositing the high-k magnesium dioxide (MgO) as the gate dielectric layer.
Improved device performances of the studied MgO-dielectric MOS-HEMT (a referenced Schottky-gate HEMT) have been achieved, including maximum drain-source saturation current density (IDS, max) of 681 (500) mA/mm, drain-source current density at VGS = 0 V (IDSS0) of 329 (289) mA/mm, maximum extrinsic transconductance (gm, max) of 112 (120) mS/mm, reduced gate leakage current (Ig) at VGS = -50 V of 3.73 × 10-5 (6.85 × 10-3) mA/mm, and two-terminal off-state gate-drain breakdown voltage (BVGD) of -123 (-104) V, respectively, at 300 K.
Consequently, superior performance of the present MOS-HEMT has been successfully achieved in this thesis. High-k MgO MOS-gate structure has been obtained by using the cost-effective USPD technique. The present MOS-HEMT device can be promisingly applied to high-frequency RFIC technologies.
摘要 I
Abstract II
Contents III
Figure Captions VI
Table Captions X
Chapter 1 Introduction 1
Chapter 2 GaN/AlGaN/GaN Heterostructure 4
2-1 GaN/AlGaN/GaN Heterostructure 4
2-2 GaN film on substrate 5
Chapter 3 Device Structure and Fabrication Processes 7
3-1 Device Structure 7
3-2 Fabrication Processes 7
3-2-1 Mesa Isolation 8
3-2-2 Drain and Source Ohmic Contact 9
3-2-3 Gate Schottky Contact 11
3-2-4 Gate Oxide Deposition (MgO) 12
3-3 Ultrasonic Spray Pyrolysis Deposition (USPD) 12
Chapter 4 Experimental Results and Discussion 13
4-1 Materials Analysis 13
4-1-1 X-ray Photoelectron Spectrometer (XPS) 13
4-1-2 Transmission Electron Microscopy (TEM) 14
4-1-3 Atomic Force Microscope (AFM) 15
4-1-4 Hall measurement 15
4-2 DC Characteristics at Room Temperature 16
4-2-1 USPD Treatment Thickness Optimization Characteristics 16
4-2-2 Current-Voltage Characteristics 17
4-2-3 Transfer Characteristics 18
4-2-4 Two-Terminal Breakdown Voltage Characteristics 19
4-2-5 Three-Terminal off state Breakdown Voltage Characteristics 19
4-3 Temperature-Dependent DC Characteristics 21
4-3-1 Temperature-Dependent Output Characteristics 21
4-3-2 Temperature-Dependent Transfer Characteristics 21
4-3-3 Temperature-Dependent Two-Terminal Breakdown Voltage Characteristics 23
4-4 Capacitance-Voltage Characteristics 24
4-4-1 Hysteresis Phenomenon 25
4-4-2 Interface State Density (Dit) 25
4-5 Microwave Characteristics 26
4-5-1 fT and fmax Characteristics 26
4-5-2 Power Characteristics 28
4-5-3 High Frequency Noise Characteristics 30
4-5-4 Low Frequency Noise Characteristics 31
4-5-5 Pulse-mode Characteristics 32
Chapter 5 Conclusions 34
References 35
Figures 42
[1]V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, and Ilesanmi Adesida, “AlGaN/GaN HEMTs on SiC With fT of Over 120 GHz,” IEEE Electron Device Lett., vol. 23, pp. 455–457, Aug. 2002.
[2]W. Lu, S. Member, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF, and Microwave Noise Performance of AlGaN–GaN Field Effect Transistors Dependence of Aluminum Concentration,” IEEE Trans. Electron Devices, vol. 50, pp. 1069–1074, Apr. 2003.
[3]Y.-F. Wu, B. P. Keller, S. Keller, N. X. Nguyen, M. Le, C. Nguyen and T. J. Jenkins, “Short Channel AlGaN/GaN MODFET’s with 50-GHz and 1.7-W/mm Output-Power at 10 GHz,” IEEE Electron Device Lett., vol. 18, no. 9, pp. 438–440, Sep. 1997.
[4]J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, pp. 250–252, Jul. 2000.
[5]K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. IEEE., vol. 91, no. 2, pp. 305-327, Feb. 2003.
[6]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
[7]C. S. Lee, Y. H. Liao, B. Y. Chou, H. Y. Liu, and W. C. Hsu, “Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation,” Superlattices Microstruct., vol.72,pp.194-203, Mar. 2014.
[8]H. Y. Liu, C. S. Lee, W. C. Hsu, L. Y. Tseng, B. Y. Chou, C. S. Ho, and C. L. Wu, "Investigations of AlGaN/AlN/GaN MOS-HEMTs on Si Substrate by Ozone Water Oxidation Method," IEEE Trans. Electron Devices, vol.60, no. 7,pp.2231~2237, Jul. 2013.
[9]S. Yagi a, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, and H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electron., vol. 50, pp. 1057–1061, Apr. 2006.
[10]H. Y. Liu, C. S. Lee, F. C. Liao, W. C. Hsu, B. Y. Chou, J. H. Tsai, and H. Y. Lee, "Comparative Studies on AlGaN/GaN MOS-HEMTs with Stacked La2O3/Al2O3 Dielectric Structures," ECS J. Solid State Sci. Technol., vol.3, no. 8, pp.N115-N119, Aug. 2014.
[11]P. Kordos, G. Heidelberger, J. Bernát, A. Fox, M. Marso, and H. Lüth, “High-power SiO2 /AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 87, pp. 143501-3, Sep. 2005.
[12]B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc 2 O 3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1661-1663, Mar. 2002
[13]P. Kordos, D. Gregusova, R. Stoklas, S. Gazi, and J. Novak, “Transport properties of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with Al2O3 of different thickness,” Solid-State Electron., vol. 52, no. 6, pp. 973-979, Jun. 2008.
[14]S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density,” Appl. Phys. Lett., vol. 73, no. 6, pp. 809-811, Aug. 1998.
[15]Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008.
[16]L. Pang, Y. Lian, D. S. Kim, J. H. Lee, and K. Kim, “AlGaN/GaN MOSHEMT With High-Quality Gate–SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering,” IEEE Trans. Electron Devices, vol. 59, no. 10, pp. 2650–2655, Oct. 2012.
[17]B. Y. Chou, C. S. Lee, C. L. Yang, W. C. Hsu, H. Y. Liu, M. H. Chiang, W. C. Sun, S. Y. Wei, S. M. Yu, "TiO2-Dielectric AlGaN/GaN/Si Metal-Oxide-Semiconductor High Electron Mobility Transistors by Using Non-Vacuum Ultrasonic Spray Pyrolysis Deposition," IEEE Electron Devices Letters, vol.35, no. 11, pp.1091-1094, Nov. 2014.
[18]J. Kim, R. Mehandru, B. Luo, R. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, and Y. Irokawa, “Characteristics of MgO/GaN gate-controlled metal-oxide-semiconductor diodes,” Appl. Phys. Lett., vol. 80, no. 24, pp. 4555-4557, Jun. 2002.
[19]E. A. Paisley, T. C. Shelton, S. Mita, R. Collazo, H. M. Christen, Z. Sitar, M. D. Biegalski, and J. P. Maria, “Surfactant assisted growth of MgO films on GaN,” Appl. Phys. Lett., vol. 101. no. 9. pp. 092904-1-4, Aug. 2012.
[20]K. T. Lee, C. F. Huang, J. Gong, and C. T. Lee, “High-Performance 1-mu m GaN n-MOSFET With MgO/MgO-TiO2 Stacked Gate Dielectrics,” IEEE Electron Device Lett., vol. 32. no. 3, pp. 306-308, Mar. 2011.
[21]M. Gladysiewicz, R. Kudrawiec, J. Misiewicz, G. Cywinski, M. Siekacz, P. Wolny, and C. Skierbiszewski, “The surface boundary conditions in GaN/AlGaN/GaN transistor heterostructures,” Appl. Phys. Lett., vol. 98, no. 23 pp. 231902-1-3, Jun. 2011
[22]O. Ambacher J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[23]X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AlGaN/GaN HFET,” Electron. Lett., vol. 35, no. 7, pp. 602-603, Apr, 1999
[24]P. Waltereit, S. Müller, K. Bellmann, C. Buchheim, R. Goldhahn, K. Köhler,L. Kirste, M. Baeumler, M. Dammann, W. Bronner, R. Quay, and O. Ambacher, “Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures,” J. Appl. Phys., vol. 106, no. 2, pp. 023535-1-7, Jul. 2009.
[25]X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng and J. M. Li, “Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates,” Solid-State Electronics, vol. 49, pp. 1387–1390, Jun. 2005.
[26]B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack, P. P. Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3,” Solid-State Electronics, vol. 46, pp. 467–476, 2002.
[27]D. Ducatteau, A. Minko, V. Hoël, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquière, J. C. De Jaeger, and S. Delage, “Output Power Density of 5.1/mm at 18 GHz With an AlGaN/GaN HEMT on Si Substrate,” IEEE Electron Device Lett., vol. 27. no. 1, pp. 7-9, Jan. 2006.
[28]W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and Tsuneo Ogura, “High breakdown voltage undoped AlGaN-GaN power HEMT on sapphire substrate and its demonstration for DC-DC converter application,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1913-1917, Nov, 2004
[29]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-Power Microwave GaN/AlGaN HEMT’s on Semi-Insulating Silicon Carbide Substrates,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 161–163, Apr. 1999.
[30]S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates, ” Appl. Phys. Lett. vol. 72, no. 16, pp. 2014-2016, Apr. 1998.
[31]R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” vol. 19, no. 3, pp. 89-91, Mar. 1998.
[32]R. Behtash, H. Tobler, M. Neuburger, A. Schurr, H. Leier,Y. Cordier, E Semond, F. Natali and J. Massies, “AIGaN/GaN HEMTs on Si(111) with6.6 W/mm output power density,” Electron. Lett., 2003.
[33]z. x. qin, z. z. chen, y. z. tong, x. m. ding, x. d. hu, t. j. yu, g. y. zhang, “Study of Ti/Au, Ti/Al/Au, and Ti/Al/Ni/Au ohmic contacts to n-GaN,” App. Phys., vol. 78, pp. 729–731, Apr. 2004.
[34]Z. Z. Chen, Z. X. Qin, C. Y. Hu, X. D. Hu, T. J. Yu, Y. Z. Tong, X. M. Ding, G. Y. Zhang, “Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method,” Mater. Sci. Eng., B, vol. 111, pp. 36–39, Mar. 2004.
[35][40]N. Chaturvedi, U. Zeimer, J. Wurfl and G. Trankle, “Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Sci. Technol, vol. 21, pp. 175–179, Nov. 2005.
[36]J. Kim, B. Gila, R. Mehandru, J. W. Johnson, J. H. Shin, K. P. Lee, B. Luo, A. Onstine, C. R. Abernathy, S. J. Pearton, and F. Rena, “Electrical Characterization of GaN Metal Oxide Semiconductor Diodes Using MgO as the Gate Oxide,” vol. 149, no. 8, pp. G482-G484, Aug. 2002.
[37]P. J. Cumpson, “Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods,” J. Electron Spectrosc. Relat. Phenom., vol. 73, no. 1, pp. 25-52, May. 1995.
[38]E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, vol. 277, no. 5334, pp. 1971-1975, Sep. 1997.
[39]Charles Kittel, “Introduction to Solid State Physics 8th Edition,” John Wiley & Son, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 藉由臭氧水氧化處理技術研製具有氧化鋁介電層之氮化鋁鎵/氮化鎵增強型金屬-氧化物-半導體異質場效電晶體
2. 以超音波霧化熱裂解沉積法製成具氧化鎂奈米柱的氮化銦鎵/氮化鎵發光二極體之研究
3. 具有氧化鑭/氧化鋁閘極介電層之金屬-氧化物-半導體氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製
4. 氮化鋁鎵/氮化鎵蕭基二極體與氮化鋁銦/氮化鎵場效電晶體之磊晶成長、元件製作與特性探討
5. P型氮化鎵閘極及鈍化層製程技術之氮化鎵增強型/空乏型高電子遷移率場效電晶體研究
6. 增強型p型氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製
7. 藉由超音波噴霧熱裂解沉積技術研製具有高介電常數二氧化鈦之氮化鋁鎵/氮化鎵異質結構場效電晶體
8. GaN MOS-HEMTs高頻元件模型參數偏壓效應之分析探討
9. 以超音波霧化熱裂解沉積法研製具有氧化鋁介電層之漸變式能障氮化鎵/氮化鋁鎵金屬-氧化物-半導體異質結構場效電晶體
10. 以超音波霧化熱裂解法沉積二氧化鈦應用於紫外光檢測器
11. 外帶式飲料業創新商業模式研究
12. 實驗用病患模型建置暨呼吸用加熱潮濕器供氣管路溫濕度數學模型
13. 包含低滲透層之未飽和土壤蒸氣抽取的整治成效分析
14. 以田口方法分析耐候鋼SPA-H調質精整製程對於平坦度改善之研究
15. 智慧型軟體工業園區開發專案管理之研究─以台中軟體園區為例