跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳柏鋒
研究生(外文):Po-Feng Wu
論文名稱:鈷之硒化、氧化、硫化之特性研究與應用
論文名稱(外文):Study on the Characteristic of Selenization, Oxidation, Sulfurization by Cobalt and Application
指導教授:施仁斌
口試委員:何滿龍林泰生謝栢滄楊明峰林瑞欽陳志榮
口試日期:2014-09-25
學位類別:博士
校院名稱:逢甲大學
系所名稱:電機與通訊工程博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:85
中文關鍵詞:直流磁控濺鍍法硒化鈷氧化鈷硫化鈷奈米片
外文關鍵詞:DC magnetron sputtering methodCoSe2Co3O4CoS2nanosheet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用直流磁控濺鍍法沉積金屬鈷薄膜於玻璃基板上,鈷薄膜在玻璃基板上以每分鐘10 nm/min的濺鍍速度製作出約600nm厚的薄膜,並將製備好的試片分別以不同的溫度及時間硫化、氧化、硒化。
在鈷的硒化物方面,此研究利用濺鍍機沉積鈷薄膜於玻璃基板上將非結晶的鈷薄膜轉變為CoSe2,然後以低溫300 °C固定加熱,在硒化時間超過24小時後會得到單結晶相的CoSe2薄膜.經過72小時退火後的硒化鈷觀察到CoSe2薄膜有兩層不同奈米型態的新穎結構層,72小時退火後的CoSe2薄膜經過光學分析後能有α > 1.0 × 105 cm-1的光吸收係數和1.51 eV的直接能隙。 在400 °C 和500 °C溫度方面,硒化鈷的薄膜有結晶狀的奈米結構及雙分子層的外觀,霍爾及電性量測顯示出加熱到500 °C的CoSe2薄膜有很高的光吸收及約1.0 eV的直接能隙,500 °C奈米多孔結晶狀的CoSe2薄膜為一P型金屬化合物及較高的能隙和吸收係數,使得它們能夠使用在太陽能光電子材料上。
在氧化鈷方面,我們利用熱退火來製備大面積及規格一致的Co3O4奈米片,其合成方式基本上是用熱氧化的形成來控制鈷的前趨薄膜,之後將其放置在純氧的氣氛中分別以300 °C、 400 °C 和500 °C中加熱二小時,在300 °C條件下,發現到CoO 和Co3O4的相同時存在。在400 °C則觀察到很大量的純Co3O4的多結晶奈米片。
在硫化鈷方面,則是利用封管硫化的方式放進高溫爐裡分別以300 °C、 400 °C 和500 °C中加熱二、五、十小時,觀察到在300 °C二小時並無奈米線的形貌出現,直到400 °C二、五、十小時的奈米線無論是數量及外觀上是最好的, 400°C五小時奈米線的樣本經過TEM、Raman及EDS的驗證後確認是含有CoS2的成分存在,至於500°C二、五、十小時的樣本推斷應是高溫的關係導致奈米線呈現萎縮的狀態。
Abstract (in English)

The DC magnetron sputtering system was used to fabricate Co precursors. Co thin films were grown on the glass substrates and cleaned in an ultrasonic cleaner with alcohol for 15 minutes, and then rinsed with distilled water.600 nm Co films were formed on the substrate at a deposition rate of 10 nm/minute. And the fabricated samples were put in the furnace at different temperature and times with Selenization、oxidation、Sulfurization by Cobalt.
In the selenization of Co, this work investigates a simple and non-toxic method to transform pre-deposited amorphous Co film into CoSe2 thin films by sputtering the Co film onto glass substrates, which are then heated at a fixed, low temperature of 300 °C. Single CoSe2-phase films having good crystallinity were obtained at a selenisation time ≧ 24 hours. At a selenisation time of 72 hours, a novel layered nanostructure CoSe2 having two different nano-morphological layers was observed. Optical analyses of the CoSe2 films obtained at 72 hours enabled us to deduct a large absorption of α > 1.0 × 105 cm-1 and a direct band gap of 1.51 eV.
At temperatures of 400 and 500 °C, the Co films have a crystalline nanostructure with bilayered topography. The Hall effect and electrical measurement of the CoSe2 films heated to 500 °C show p-type metallic behavior. Optical analyses of the CoSe2 films at 500 °C show a large absorption and a direct band gap (~ 1.0 eV). Nano-porous crystallite CoSe2 film selenized at 500 °C is a p-type metallic compound with a suitable band gap and high absorption coefficient, which makes them quite useful as a new candidate for solar energy photo-electrode materials.
In the oxidation of Co, large area and uniform nanosheets Co3O4 have been fabricated by thermal annealing of cobalt thin film under the DC magnetron sputtering method. The synthesis is based on controlling the simple thermal oxidative formation of precursor Co films. The Co films were heated at 300, 400, and 500 °C for two hours in a pure oxygen atmosphere. At the 300 °C, CoO and Co3O4, phases appear to survive together. An amount of pure polycrystalline Co3O4 nanosheets were observed at 400 °C. The structural and morphological properties of the nanosheets Co3O4 were characterized by means of transmission electron microscopy (TEM) and Raman spectroscopy.
Keywords : DC magnetron sputtering method、CoSe2、Co3O4 、CoS2、nanosheet
Contents
誌謝 I

CHINESE ABSTRACT (IN CHINESE) V

ABSTRACT (IN ENGLISH) VII

CONTENTS IX

FIGURE CAPTIONS XI

TABLE CAPTIONS XV

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 REVIEW OF RELATED LITERATURE 4

2-1 The fabrication technology of Co thin film 4

2-2 Various methods for growth of Co thin films 5
2-3 Crystal structure and introduction of materials 10

CHAPTER 3 EXPERIMENTAL METHOD 15

3-2 Experimental procedures of CoSe2 thin films 16

3-3 Experimental procedures of Co3O4 thin films 17
3-4 Experimental procedures of CoS2 thin films 19
3-5 Samples analyses 21

CHAPTER 4 RESULTS AND DISCUSSION 22

4-1 Analyses of Co thin films 22

4-2 Characterization of CoSe2 thin films 23

4-3 Characterization of Co3O4 thin films 45

4-4 Characterization of CoS2 thin films 57

CHAPTER 5 CONCLUSIONS 59

5-1 Conclusions of CoSe2 59
5-2 Conclusions of Co3O4 60
5-3 Conclusions of CoS2 61

REFERENCE 62
[1] J. Yang, G. H. Cheng, J. H. Zeng, S. H. Yu, X. M. Liu, and Y. T. Qian, Chem.
Mater. 13, 848 (2001).

[2] M. R. Gao, W. T. Yao, H. B. Yao, and S. H. Yu, J. Am. Chem. Soc. 131, 7486
(2009).

[3] C. E. M. Campos, J. C. de Lima, T. A. Grandi, K. D. Machado, and P. S. Pizani,
Physica B (Amsterdam) 324, 409 (2002).
[4] Q. Lu, J. Hu, K. Tang, B. Deng, Y. Qian, G. Zhou, and X. Liu, Mater. Chem.
Phys. 69, 278 (2001).

[5] W. Zhang, Z. Yang, J. Liu, Z. Hui, W. Yu, Y. Qian, G. Zhou, and L. Yang, Mater.
Res. Bull. 35, 2403 (2000).

[6] M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, and S. H. Yu, J. Am. Chem. Soc. 134,
2930 (2012).
[7] D. Zhao, S. Zhang, G.. Yin, C. Du, Z. Wang, and J. Wei, J. Powe. Sour. 206, 103
(2012).
[8] Y. J. Feng, T. He, and N. A. Vante, Electrochim. Acta 54, 5252 (2009).
[9] J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, and M. M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006).
[10] Y. Cui, Q. Q. Wei, H. K. Park, and C.M. Lieber, Science 293, 1289 (2001).
[11] A. Kolmakov, and M. Moskovits, Ann. Rev. Mater. Res. 34, 151 (2004).
[12] M. C. Mcalpine, H. Ahmad, D. W. Wang, and J. R. Heath, Nat. Mater. 6, 379
(2007).
[13] A. Gurlo, and R. Riedel, Chem. Int. Ed. 46, 3826 (2007).

[14] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004).

[15] X. L. Gou, G. X. Wang, X. Y. Kong, D. Wexler, J. Horvat, J. Yang, and J. S.
Park, Chem. Eur. J. 14, 5996 (2008).
[16] D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, Nano Lett.
4, 1919 (2004).

[17] M. Law, H. Kind, B. Messer, F. Kim, and P. D. Yang, Angew. Chem. Int. Ed. 41,
2405 (2002).

[18] A. Gulino, G. Fiorito, and I. Fragala, J. Mater. Chem. 13, 861 (2003).
[19] B. Varghese, T. C. Hoong, Z. Yanwu, M. V. Reddy, B. V. R. Chowdari, A. T. S.
Wee, T. B. C. Vincent, C. T. Lim, and C. H. Sow, Adv. Funct. Mater. 17, 1932
(2007).
[20] T. Sugimoto, and E. Matijevic, J. Inorg. Nucl. Chem. 41, 165 (1979).

[21] H. Yamaura, J. Tamaki, K. Moriya, N. Miura, and N. Yamazoe, J. Electrochem.
Soc. 144, L158 (1997).

[22] M. G. Hutchins, P. J. Wright, and P. D. Grebenik, Solar Energy Mater. 16, 113 (1987).

[23] F. ˇSvegl, B. Orel, M. G. Hutchins, and K. Kalcher, J. Electrochem. Soc. 143,
1532 (1996).
[24] F. ˇSvegl, B. Orel, I. Grabec-ˇSvegl, and V. Kauˇciˇc, Electrochim. Acta 45,
4359 (2000).
[25] R. Yamamoto, A. Machida, Y. Moritom, and A. Nakamura, Physica B 281-282,
705 (2000).
[26] H. Yamada, K. Terao, and M. Aoki, J. Magn. Magn. Mater. 177-181, 607 (1998).

[27] H. Hiraka, Y. Endoh, and K. Yamada, J. Magn. Magn. Mater. 177–181, 1349
(1998).
[28] J. M. Yan, H. Z. Huang, J. Zhang, Z. J. Liu, and Y. Yang, J. Power Sources 145,
264 (2005).

[29] S. Fiechter, and H. Tributsch, Electrochim. Acta. 47, 2615 (2002).
[30] T. Shishidou, A. J. Freeman, and R. Asahi. Phys. Rev. B: 64, 180401 (2001).
[
31] K. Ramesha K, R. Seshadri, C. Ederer C, T. He, and M. A. Subramanian, Phys.
Rev. B: 70, 214409 (2004).
[32] P. J. Masset, and R. A. Guidotti, J. Power Sources 178, 456 (2008).
[33] J. M. Yan, H. Z. Huang, J. Zhang, Z. J. Liu, and Y. Yang, J. Power Sources 146,
264 (2005)

[34] G. H. Guo, J. H. Hong, C. J. Cong, X. W. Zhou, and K. L. Zhang, J. Mater. Sci.
40, 2557 (2005).

[35] J. Z. Wang, G. X. Wang, L. Yang, S. H. Ng, H. K. Liu, J. Solid State Electrochem. 10, 250 (2006).

[36] C. F. Powell, J. H. Oxley, and J. M. Blocher, in: vapor deposition, (John Wiley &
Sons, New York, 1966).

[37] E. Kondoh, R. A. Donaton, S. Jin, H. Bender, W. Vandervorst, K. Maex, Appl.
Surf. Sci. 136, 87 (1998).

[38] D. J. Larson, A. K. Petford, A. Cerezo, and G. D. W. Smith, Acta Mater. 47,
4019 (1999).

[39] H. Miura, E. Ma, C. V. Thompson, J. Appl. Phys. 70, 4287 (1991).

[40] V. Scheuch, B. Voigtländer, and H. P. Bonzel, Surf. Sci. 372, 71 (1997).
[41] J. Heo, and H. Jeon, Thin Solid Films 379, 265 (2000).
[42] M. Y. Lee, P. A. Bennett, Phys. Rev. Lett. 75, 4460 (1995).
[43] S. L. Chou, J. Z. Wang, H. K. Liu, and S. X. Dou, J. Power Sources 182, 359
(2008).

[44] T. Gao, and T. Wang, J. Cryst. Growth 290, 660 (2006).

[45] S. Kar, S. Chakrabarti, and S. Chaudhuri, Nanotec. 17, 3058 (2006).
[46] M. C. Johnson, S. Aloni, D. E. McCready, and E. D. B. Courchesne, Cryst.
Growth Des. 6, 1936 ( 2006 ).

[47] J. Zhang, X. Qing, F. Jiang, and Z. Dai, Chem. Phys. Lett. 371, 311 (2003).
[48] B. D. Cullity and C. D. Graham, in: Introduction to Magnetic Materials, (John
Wiley & Sons, New York, 2009).
[49] 金原粲,薄膜製做工藝學,賴耿陽,復漢出版社,1990。
[50] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,2002。
[51] H. S. Jarrett, W. H. Cloud, R. J. Bouchard, S. R. Butler, C. G. Frederick, and J. L. Gilson, Phys. Rev. Lett. 21, 617 (1968).
[
52] P. Panissod, G. Krill, M. Lahrichi, and M. F. Lapierre, Phys. Lett. A 59, 221 (1976).
[53] S. M. Marcus, and T. A. Bither, Phys. Lett. A 32, 363 (1970).
[54] K. Adachi, K. Sato, and M. Takeda, J. Phys. Soc. Jpn. 26, 631 (1969).

[55] G. Krill, and A. Amamou, J. Phys. Chem. Sol. 41, 531 (1980).
[56] V. H. McCann, and J.B. Ward, J. Phys. Chem. Sol. 38, 991 (1977).

[57] H. Sato, F. Nagasaki, Y. Kani, S. Senba, Y. Ueda, A. Kimura, and M. Taniguchi,
Solid State Commun. 118, 563 (2001).
[58] L. Levy, N. Feltin, D. Ingert, and M. P. Pileni, J. Phys. Chem. B 101, 9153
(1997).

[59] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
[60] R. A. Sidik, and A. B. Anderson, J. Phys. Chem. B 110, (2006) 936.
[61] E. Vayner, R. A. Sidik, A. B. Anderson, and B. N. Popov, J. Phys. Chem. C 111,
10508 (2007).
[62] D. Susac, A. Sode, L. Zhu, P. C. Wong, M. Teo, D. Bizzotto, K. A. R. Mitchell,
R. R. Parsons, and S. A. Campbell, J. Phys. Chem. B 110, 10762 (2006).

[63] M. R. Gao, Q. Gao, J. Jiang, C. H. Cui, W. T. Yao, and S. H. Yu, Angew. Chem.
Int. Ed. 50, 4905 (2011).
[64] L. Zhu, D. Susac, M. Teo, K. C. Wong, P. C. Wong, R. R. Parsons, D. Bizzotto,
K. A. R. Mitchell, and S. A. Campbell, J. Catal. 258, 235 (2008).

[65] Y. J. Feng, T. He, and N. A. Vante, Chem. Mater. 20, 26 (2008).
[66] Y. J. Feng, T. He, N. A. Vante, Fuel Cells 10, 77 (2010).

[67] J. B. Shi, Y. C. Chen, P. F. Wu, S. Y. Yang, T. K. Kang, P. C. Yang, C. L. Lin, S. L. Young, and M. C. Kao, Cryst. Res. Technol. 48, 94 (2013).

[68] J. B. Shi, Y. C. Chen, C. J. Chen, and P. F. Wu, Cryst. Res. Technol. 47, 183
(2012).
[69] E. Gulari, C. GuÈlduÈr, S. Srivannavit, and S. Osuwan, Appl. Catal., A: Gen.
182, 147 (1999).

[70] H. K. Lin, H. C. Chiu, H. C. Tsai, S. H. Chien, and C. B. Wang, Catal. Lett. 88,
169 (2003).
[71] N. Bahlawane, E. F. Rivera , K. K. Höinghaus, A. Brechling, and U. Kleineberg,
Appl. Catal.,B: EnViron. 53, 245 (2004).
[72] A. G. Avila, E. C. Barrera, L. A. Huerta, and S. Huhl, Sol. Energy Mater. Sol.
Cells 82, 269 (2004).
[73] T. Kobayashi, and M. Haruta, Sens. Actuators B: Chem. 14, 545 (1993).

[74] M. Ando, T. Kobayashi, and M. Haruta, J. Chem. Soc., Faraday Trans. 90, 1011
(1994).

[75] M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, J. Mater. Chem. 7, 1779
(1997).

[76] M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, Sens. Actuators, B. 96, 589
(2003).

[77] B. Varghese, T. C. Hoong, Z. Yanwu, M. V. Reddy, B. V. R. Chowdari, A. T. S.
Wee, T. B. C. Vincent, C.T. Lim, and C.H. Sow, Adv. Funct. Mater. 17, 1932
(2007).

[78] A. Gulino, G. Fiorito, and I. Fragalá, J. Mater. Chem. 13, 861 (2003).
[79] L. D. Kadam, S. H. Pawar, and P. S. Patil, Mater. Chem. Phys. 68, 280 (2001).

[80] F. Svegl, B. Orel, I.G. Svegl, and V. Kaucic, Electrochem. Acta. 45, 4359 (2000).

[81] N. Bahlawane, E. F. Rivera, K. K. Honghaus, A. Brechling, and U. Kleinberg,
Appl. Catal. B: Envir. 53, 245 (2004).

[82] J. Pal, and P. Chauhan, Mater. Charact. 61,575 (2010).

[83] K.B. Klepper, O. Nilson, and H. Fjellvag, J. Cryst. Growth. 307, 457 (2007).

[84] S. L. Chou, J. Z. Wang, H. K. Liu, and S. X. Dou, J. Power Sources 182, 359
(2008).

[85] Z. W. Fu, Y. Wang, Y. Zhang, and Q. Z. Qin, Solid State Ionics 170, 105 (2004).

[86] C. L. Liao, Y. H. Lee, S. T. Chang, and K. Z. Fuang, J. Power Sources 158, 1379
(2006).

[87] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science
294, 1313 (2001).

[88] A. Kolmakov, and M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004).
[89] M. Osada, and T.Sasaki, J. Mater. Chem. 19, 2503 (2009).
[90] M. Osada, and T.Sasaki, Adv. Mater. 24, 210 (2012).

[91] R. B. Rakhi, W. Chen, D. Cha, and H. N. Alshareef, Nano Lett. 12, 2559(2012).

[92] G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao, J. Park, and H. Ahn, Chem. Eur. J. 16, 11020 (2010).
[93] D. Wang , Q.Wang , and T. Wang , Inorg. Chem. 50, 6482 (2011).
[94] M. b. Zheng, J. Cao, S. T. Liao, J. S. Liu, H. Q. Chen, Y. Zhao, W. J. Dai,G. B. Ji, J. M. Cao, and J. Tao, J. Phys. Chem. C 113, 3887 (2009).

[95] J. K. Lee, G. P. Kim, K. H. Kim, I. K. Song, and S. H. Baeck, J. Nanosci. Nanotechnol. 10, 3676 (2010).

[96] M. Vaseem, A. Umar, S. H. Kim, A. A. Hajry, and Y. B. Hahn, Mater. Lett. 62,1659 (2008).
[97] A. A. Firooz, A. R. Mahjouba, and A. A. Khodadadi, Mater. Chem. Phys. 115, 196 (2009).

[98] J. L. Gunjakar, A. M. More, K. V. Gurav, and C. D. Lokhande, Appl. Surf. Sci. 254, 5844 (2008).
[99] R. Yamamoto, A. Machida, Y. Moritom, and A. Nakamura, Physica B 281&282,
705 (2000).
[100] J. M. Yan, H. Z. Huang, J. Zhang, Z. J. Liu, and Y. Yang. J. Power Sources 145, 264 (2005).
[101] T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B 64, 180401 (2001).

[102] P. J. Masset, R. A. Guidotti, J. Power Sources 178, 456 (2008).
[103] X. H. Chen, and R. Fan, Chem. Mater. 13, 802 (2001).
[104] M. Hansen, in: Constitution of Binary Alloys, (Geminuim, New York, 1985), 502.
[105] X. H. Liu, N. Zhang, R. Yi, G. Z. Qiu, A. G. Yan, H. Y. Wu, D. P. Meng,
and M. T. Tang, Mater. Sci. Eng., B 140, 38 (2007).

[106] J. H. Zhan, X. G. Yang, S. D. Li, Y. Xie, W. C. Yu, and Y. T. Qian, J. Solid State Chem. 152, 537 (2000).

[107] J. F. Zhao, J. M. Song, C. C. Liu, B. H. Liu, H. L. Niu, C. J. Mao, S. Y. Zhang,
Y. H. Shen, and Z. P. Zhang, Cryst. Eng. Commu. 13, 5681 (2011).

[108] J. C. Osuma, C. I. Oriaku, and F. I. Ezema, Chal. Lett. 6, 385 (2009).

[109] L. Zhu, M. Teo, P. C. Wong, K. C. Wong, I. Narita, F. Ernst, K. A. R. Mitchell, and S. A. Campbel, Appl. Catal., A: Gene 386, 157 (2010).

[110] Q. Li, M. A. Brown, J. C. Hemminger, and R. M. Penner. Chem. Mater. 18, 3432 (2006).

[111] A. Hagfeldt, and M. Gratzel. Chem. Rev. 95, 49 (1995).

[112] V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C: Solid State Phys. 21, L199 (1988).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top