跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳勝崎
研究生(外文):Sheng-Chi Chen
論文名稱:電解液添加劑對鋰鎳鈷氧化物之電化學研究
論文名稱(外文):The electrochemical study of the LiNi0.8Co0.2O2 with a additive in electrolyte
指導教授:劉茂煌
指導教授(外文):Mao-Huang Liu
口試委員:陳壽椿陳金銘劉茂煌
口試委員(外文):Show-Chuen ChenJin-Ming ChenMao-Huang Liu
口試日期:2015-07-28
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:鋰鎳鈷氧化物電解液添加劑循環壽命
外文關鍵詞:LiNi0.8Co0.2O2electrolyte additivecycle life
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討LiNi0.8Co0.2O2正極材料在加入噻吩(thiophene)和聯苯(biphenyl)兩種電解液添加劑後的電化學之特性提升的效應。首先使用共沉澱法合成出LiNi0.8Co0.2O2後,再以掃描式電子顯微鏡(SEM)、X-ray繞射光譜儀(XRD)、感應耦合電漿(ICP)和能量散射光譜儀(EDS)確認材料的物理性質。為了了解聯苯、噻吩的氧化電位以及其在充放電過程中的電聚合反應,藉由線性掃描伏安法和循環伏安法觀察添加劑於2.8 V至4.3 V電位範圍間的電化學行為。電性測試方面,初次充放電時,加入電解液含量0.1 wt.%或者0.5 wt.%的聯苯和噻吩後放電電容量無明顯差異,但不可逆電容量會較高,是因為聯苯和噻吩的不可逆氧化反應所致。經由50圈充放電後,聯苯與噻吩一起添加的電池效能會高於單獨加入聯苯、噻吩或者無添加劑的電池,且可提高大電流放電的能力。由於加入聯苯和噻吩會在正極材料表面形成電聚合薄膜,經由交流阻抗分析測試結果證實可降低多次充放電後的電傳阻抗。
The electrochemical effects of LiNi0.8Co0.2O2 cathode material with the electrolyte additives (biphenyl and thiophene) had been studied. The LiNi0.8Co0.2O2 was synthesized by co-precipitation method and measured the physical properties by scanning electron microscope/ energy dispersive spectroscopy (SEM/EDS), X-ray diffraction spectroscopy (XRD) and inductively coupled plasma (ICP). The electropolymerization of biphenyl and thiophene had been observed in the potential range of 2.8 V to 4.3 V by linear sweep voltammetry and cyclic voltammetry. After adding 0.1 wt.%/0.5 wt.% of biphenyl or thiophene, the initial discharge-capacities were not decreased but the irreversible capacities were increased. The cycle-life and rate-capability of battery were improved while both of the biphenyl and thiophene were added in the electrolyte. For the AC impedance analysis, the co-electropolymer film of biphenyl and thiophene on the surface of the cathode material can decrease the resistance of electron-transfer.
目錄 I
圖目錄 III
表目錄 VI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
第二章 文獻回顧 4
2-1 鋰離子二次電池工作原理 4
2-2 LiNi1-xCoxO2正極材料介紹 5
2-3 化學共沉澱法 7
2-4 電解液添加劑 10
2-4-1 聯苯(biphenyl) 13
2-4-2 噻吩(thiophene) 16
2-4-3 鄰三聯苯(o-terphenyl) 18
2-4-4 噻吩衍生物(Thiophene derivative) 20
第三章 實驗方法 24
3-1 實驗藥品與耗材 24
3-2 實驗儀器設備 25
3-3 實驗架構流程圖 27
3-4 化學共沉澱法合成 LiNi0.8Co0.2O2 28
3-5 材料鑑定與物性分析 31
3-6 正極極板製作 33
3-7 鈕扣型電池組裝 35
3-8 電解液測試之電池槽組裝 36
3-9 電化學性質測試分析 37
第四章 結果與討論 39
4-1 正極材料前驅物Ni0.8Co0.2(OH)2物理性質分析 39
4-1-1 前驅物表面型態分析 39
4-2 正極材料LiNi0.8Co0.2O2物理性質分析 40
4-2-1 正極材料表面型態分析 40
4-2-2 正極材料晶體結構分析 40
4-2-3 正極材料之元素比例分析 42
4-3 電解液添加劑電化學性質分析 43
4-3-1 線性掃描伏安法 43
4-3-2 循環伏安法 44
4-4 電解液添加劑對LiNi0.8Co0.2O2之電化學性質影響 46
4-4-1 初次充放電分析(Initial charge-discharge) 46
4-4-2 循環壽命分析(Cycle Life) 49
4-4-3 大電流放電能力測試(C-rate) 53
4-4-4 交流阻抗分析 57
第五章 結論 60
第六章 參考文獻 61
[1] Z. Chen, J.R. Dahn, Electrochim. Acta, 49 (2004) 1079.
[2] M.S. Whittingham, Chem. Rev., 104 (2004) 4271.
[3] H. Omanda, T. Brouse, C. Marhic, D.M. Schleich, J. Electrochem. Soc., 151 (2004) A922.
[4] B.R. Lee, H.J. Noh, S.T. Myung, K. Amine, Y.K. Sun, J. Electrochem. Soc., 158 (2011) A180.
[5] F. Joho, P. Novak, Electrochim. Acta, 45 (2000) 3589.
[6] S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, J. Power Sources, 216 (2012) 179.
[7] X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai, X. Sun, J. Power Sources, 247 (2014) 57.
[8] C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Electrochim. Acta, 51 (2006) 3872.
[9] L.Q. Wang, L.F. Jiao, H.T. Yuan, J. Guo, M. Zhao, H.X. Li, Y.M. Wang, J. Power Sources, 162 (2006) 1367.
[10] L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem., 13 (2009) 1381.
[11] Y. Zeng, J. He, J. Power Sources, 189 (2009) 519.
[12] S.S. Zhang, J. Power Sources, 162 (2006) 1379.
[13] K. Abe, Y. Ushigoe, H. Yoshitak, M. Yoshio, J. Power Sources, 153 (2006) 328.
[14] D.W. Kim, Bull. Korean Chem. Soc., 30 (2009) 319.
[15] Y.S. Lee, K.S. Lee, Y.K. Sun, Y.M. Lee, D.W. Kim, J. Power Sources, 196 (2011) 6997.
[16] T. Takeuchi, T. Kyuna, H. Morimoto, S.I. Tobishima, J. Power Sources, 196 (2011) 2709.
[17] L.X. Xing, M. Hu, Q. Tang, J.P. Wei, X. Qin, Z. Zhou, Electrochim. Acta, 59 (2012) 172.
[18] X. Sun, H.S. Lee, X.Q. Yang, J. McBreen, Electrochemical and Solid-State Letters, 5 (2002) A248.
[19] L.F. Li, H.S. Lee, H. Li, X.Q. Yang, K.W. Nam, W.S. Yoon, J. McBreen, X.J. Huang, J. Power Sources, 184 (2008) 517.
[20] S. Li, L. Li, J. Liu, J. Jing, X. Li, X. Cui, Electrochimica Acta, 155 (2015) 321-326.
[21] J. Zheng, J. Xiao, M. Gu, P. Zuo, C. Wang, J.-G. Zhang, J. Power Sources, 250 (2014) 313-318.
[22] X. Liao, Q. Huang, S. Mai, X. Wang, M. Xu, L. Xing, Y. Liao, W. Li, Journal of Power Sources, 272 (2014) 501-507.
[23] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Materials Science and Engineering R, 73 (2012) 51.
[24] R.J. Gummow, M.M. Thackerary, Solid State Ionics, 681 (1992) 53.
[25] J. Cho, G. Kim, H.S. Lim, J. Electrochem. Soc., 146 (1999) 3571.
[26] C. Delmas, I. Saadoune, solid State Ionics, 53 (1992) 370.
[27] T.R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for lithium and lithium-ion batteries, 2014.
[28] Y. Zhang, Y. Zhang, S. Xia, P. Dong, L. Jin, J. Song, American Journal of Analytical Chemistry, 04 (2013) 7-12.
[29] B. Li, Y. Wang, H. Lin, X. Wang, M. Xu, Y. Wang, L. Xing, W. Li, J. Power Sources, 267 (2014) 182-187.
[30] E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses, K. Brandt, J. Electrochem. Soc., 147 (2000) 4023.
[31] J. Yang, Y. Zhang, P. Zhao, Y. Shang, L. Wang, X. He, J. Wang, Electrochimica Acta, 158 (2015) 202-208.
[32] H. Rong, M. Xu, B. Xie, W. Huang, X. Liao, L. Xing, W. Li, J. Power Sources, 274 (2015) 1155-1161.
[33] J. Yang, P. Zhao, Y. Shang, L. Wang, X. He, M. Fang, J. Wang, Electrochimica Acta, 121 (2014) 264-269.
[34] K.-S. Lee, Y.-K. Sun, J. Noh, K.S. Song, D.-W. Kim, Electrochemistry Communications, 11 (2009) 1900-1903.
[35] Y.E. Hyung, D.R. Vissers, K. Amine, Journal of Power Sources, 119-121 (2003) 383-387.
[36] L. Xia, Y. Xia, Z. Liu, Journal of Power Sources, 278 (2015) 190-196.
[37] D.G. Belov, D.T. Shieh, J. Power Sources, 247 (2014) 865-875.
[38] M.Q. Xu, L.D. Xing, W.S. Li, X.X. Zuo, D. Shu, G.L. Li, J. Power Sources, 184 (2008) 427-431.
[39] T.-H. Nam, E.-G. Shim, J.-G. Kim, H.-S. Kim, S.-I. Moon, J. Power Sources, 180 (2008) 561-567.
[40] B. Yang, C. Li, J. Zhou, J. Liu, Q. Zhang, Electrochimica Acta, 148 (2014) 39-45.
[41] K. Abe, T. Takaya, H. Yoshitake, Y. Ushigoe, M. Yoshio, H. Wang, Electrochemical and Solid-State Letters, 7 (2004) A462.
[42] L. Xia, Y. Xia, Z. Liu, Electrochimica Acta, 151 (2015) 429-436.
[43] D. Shin, A. Marnthiram, Electrochem. Comm. 13 (2011) 1213.
[44] S. Prabakarm, S. Han, S. Singh, D. Lee, K. Sohn, M. Pyo, J. Power Sources 209 (2012) 57.
[45] M. Jo, Y. Lee, K. Kim, J. Cho, J. Electrochem. Soc. 157(7) (2010) A841.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top