跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 00:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐晧人
研究生(外文):Hao-Jen Tang
論文名稱:逐次區間估計法應用於分類測驗問題之研究
論文名稱(外文):Application of Sequential Interval Estimation to Multicategory Classification
指導教授:盧宏益盧宏益引用關係
指導教授(外文):Hung-Yi Lu
口試委員:劉正夫盧宏益林原宏
口試委員(外文):Jeng-Fu LiuHung-Yi LuYuan-Horng Lin
口試日期:2015-07-27
學位類別:碩士
校院名稱:輔仁大學
系所名稱:統計資訊學系應用統計碩士班
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:β – protection分類測驗逐次區間估計法逐次機率比檢定
外文關鍵詞:β – protectionclassification testsequential interval estinationsequential probability ratio test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用逐次區間估計 (SIE) 將單尾信賴區間應用於多類別的適性分類測驗上,探討多類別分類測驗的結果。研究結果顯示,在固定區間寬度的情形下,利用逐次區間估計進行多類別分類測驗,在各受試者能力區間的平均測驗題數無明顯差異;相較於 SIE,當受試者能力位於逐次機率比檢定 (SPRT) 的灰色地帶時, SPRT 的平均測驗題數會增加,分類正確率會降低。變動的區間寬度設定可以避免灰色地帶的產生,有效降低誤判比率;在最大限制測驗題數的測驗情境中,更能有效提升分類正確率並降低測驗題數。在選題策略方面, SIE 使用以估計為取向的 FI 選題策略可以提升測驗的效率性,而 SPRT 使用以截點為取向的 KL 選題策略更能有效降低測驗所需題數。
In this study, we apply sequential one-side confidence interval estimation procedures with β– protection to adaptive multicategory testing. The results indicated thatthere were no significant differences in average length of test for every ability interval.There are no indifference region with varying wide of confidence, it can reduce misclassification rate.With the truncation of test, both misclassification rate and length of test can be reduced. For the item selectionstrategies, FI can reduce length of test in SIE.However, KL is more efficient than FIin SPRT.


第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究流程 3
第貳章 文獻探討 5
第一節 試題反應理論 5
第二節 電腦化分類測驗 10
第三節 選題策略 13
第四節 逐次檢定方法 15
第參章 研究方法 21
第一節 研究工具 21
第二節 研究設計 21
第三節 SIE與SPRT在分類測驗上之演算法 24
第四節 結果評估 26
第肆章 研究結果與分析 28
第一節 SIE與SPRT應用於精熟測驗結果與分析 28
第二節 不同選題策略下,SIE與SPRT應用於精熟測驗結果與分析 36
第三節 SIE與SPRT應用於分類測驗結果與分析 39
第四節 不同選題策略下,SIE與SPRT應用於分類測驗結果與分析 44
第伍章 結論與建議 48
第一節 結論 48
第二節 後續研究建議 49
參考文獻 50

參考文獻
中文部分
余民寧(2009)。試題反應理論(IRT)及其應用。台北市:心理出版社。
朱怡君(2005)。「a-分層」電腦適性測驗曝光率控管。中正大學心理學研究所未出版碩士論文,嘉義縣。
洪小雰(2006)。電腦分類測驗之內容平衡及曝光率控制。中正大學心理學研究所未出版碩士論文,嘉義縣。
盧宏益(2012)。廣義逐次機率比檢定在等第制分數評量的應用。測驗學刊。59(1)。33-48。












英文部分
Attfield, C. L. (1983). Consistent estimation of certain parameters in the unobservable variable model when there is specification error. The Review of Economics and Statistics, 164-167.
Baker, F. B. (2001). The basics of item response theory. Portsmouth, NH: Heinemann.
Begg, M. D., & Lagakos, S. (1990). On the consequences of model misspecification in logistic regression. Environmental health perspectives, 87, 69.
Chang, H. H., Qian, J., & Ying, Z. (2001). a-Stratified multistage computerized adaptive testing with b blocking. Applied Psychological Measurement, 25(4), 333-341.
Chang, Y. C. I., & Ying, Z. (2004). Sequential estimation in variable length computerized adaptive testing. Journal of Statistical Planning and Inference,121(2), 249-264.
Chang, Y. C. I. (2005). Application of sequential interval estimation to adaptive mastery testing. Psychometrika, 70(4), 685-713.
Cover, T. M., & Thomas, J. A. (1991). Elements ofinformation. TheoryWiley, New York.
Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Holt, Rinehart and Winston, 6277 Sea Harbor Drive, Orlando, FL 32887.
Eggen, P. D., & Kauchak, D. P. (1999). Educational psychology: Windows on classrooms. New Jersey: Merrill.
Ferguson, R. L. (1969). Computer-assisted criterion-referenced measurement (Working Paper No. 41). Pittsburgh PA: University of Pittsburgh Learning and Research Development Center.(ERIC Documentation Reproduction Service No. ED 037 089).
Gujarati, D. (1992).Essentials of Econometrics (2nd ed.). New York: London, McGraw-Hill, INC.
Gulliksen, H. (1987). Theory of mental test. Hillsdale, NJ: Lawrence Erlbaum Associates.
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications (Vol. 7). Springer.
Kingsbury, G. G., & Weiss, D. J. (1983). A comparison of IRT-based adaptive mastery testing and a sequential mastery testing procedure. New horizons in testing: Latent trait test theory and computerized adaptive testing, 44.
Lin, C. J., & Spray, J. (2000). Effects of Item-Selection Criteria on Classification Testing with the Sequential Probability Ratio Test. ACT Research Report Series.
Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores.
Mcdonald, I. (1999). Remote paging in a single address space operating system supporting quality of service.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychological theory.
Reed, F. C. (1960). A sequential multi-decision procedure. In Proc. Symp. on Decision Theory and Application to Electronic Equipment Development, USAF Development Centre, Rome, NY.
Spray, J. A. (1993). Multiple-Category Classification Using a Sequential Probability Ratio Test.
Silberberg, E., & Suen, W. (1990). The structure of economics: a mathematical analysis. New York.
Sympson, J. B., & Hetter, R. D. (1985). Controlling item-exposure rates in computerized adaptive testing. In Proceedings of the 27th annual meeting of the Military Testing Association (pp. 973-977).
Thompson, N. A., & Prometric, T. (2007). A practitioner’s guide for variable-length computerized classification testing. Practical Assessment Research & Evaluation, 12(1), 2.
Thompson, N. A. (2008). Item selection in computerized classification testing.Educational and Psychological Measurement.
Tong, Y. L. (2005). A sequential multi-hypothesis test for the mean function of a discrete-time Gaussian process. Communications in Statistics—Theory and Methods, 34(6), 1349-1362.
van der Linden, W. J., & Veldkamp, B. P. (2004). Constraining item exposure in computerized adaptive testing with shadow tests. Journal of Educational and Behavioral Statistics, 29(3), 273-291.
Wald, A. (1947). Sequential analysis. 1947.
Weiss, D. J., & Kingsbury, G. (1984). Application of computerized adaptive testing to educational problems. Journal of Educational Measurement, 21(4), 361-375.
Wijsman, R. A. (1981). Confidence sets based on sequential tests.Communications in Statistics-Theory and Methods, 10(21), 2137-2147.
Wijsman, R. A. (1982). Sequential confidence sets: Estimation-oriented versus test-oriented construction. Statistical Decision Theory and Related Topics, 3, 435-450.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top