跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉程凱
研究生(外文):Chen-Kai Liu
論文名稱:利用資料探勘技術建立疾病危險因子分析模式 -以糖尿病腎病變透析治療為例
論文名稱(外文):Applying Data Mining Techniques for Constructing Disease Risk Factor Analysis Model– The Case for Diabetic Nephropathy and Dialysis
指導教授:李天行李天行引用關係
指導教授(外文):Tian-Shyug Lee
口試委員:呂奇傑陳麒文
口試委員(外文):Chi-Jie LUChi-Wen Chen
口試日期:2015-06-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:企業管理學系管理學碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:130
中文關鍵詞:資料探勘類別不平衡疾病危險因子糖尿病腎病變透析治療
外文關鍵詞:data miningclass imbalancedisease risk factordiabetic nephropathydialysis treatment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1152
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
透析治療已成為全民健保的龐大負擔,而腎病變為影響糖尿病患者是否進入透析階段的主要因素。本研究目的為利用資料探勘分析健保資料庫,探討未患有腎病變的糖尿病患者,於未來三年內發生腎病變,並進入透析階段之疾病危險因子。本研究利用健保資料庫進行回溯性世代研究,並透過集群減少多數抽樣技術(SBC)、分類迴歸樹(CART)與支援向量機(SVM)等資料探勘技術,建立疾病危險因子分析模式。本研究發現當患者具備「糖尿病病程五年以上」、「增殖型視網膜病變」或「玻璃體出血」等分析模式所篩選之疾病危險因子時,其三年內進入透析階段的發生率與勝算比(odd ratio, OR)皆顯著較高。
本研究所提之分析模式,能夠有效的發揮資料探勘之計算能力並克服類別不平衡等問題,希冀可提供其他使用健保資料庫進行疾病危險因子及高危險族群篩選的研究參考。

Dialysis treatment has become a huge burden on national health insurance. Nephropathy is major factors used to diagnose whether diabetic patients start dialysis treatment. The purpose of this study is applying data mining techniques to analysis the databases of national health insurance to explore disease risk factors affecting diabetic patients without nephropathy start dialysis treatment in next three years. The proposed disease risk factor analysis model composes three data mining techniques including under sampling based on clustering (SBC), classification and regression tree (CART) and support vector machine (SVM). Experimental results showed that three disease risk factors involving “diabetes of over 5-years duration”, “Proliferative diabetic retinopathy”, and “vitreous hemorrhages” are selected as important risk factors by using the proposed analysis model. The diabetic patients with the three risk factors have higher incidences of dialysis than the diabetic patients without the three risk factors. The proposed model overcomes the class imbalance problem and can be used to accurately find important disease risk factors and high-risk groups.
目錄
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究流程 5
第貳章 文獻探討 7
第一節 糖尿病腎病變 7
第二節 資料探勘 10
第三節 疾病預測 10
第四節 集群減少多數抽樣技術 12
第五節 分類迴歸樹 14
第六節 支援向量機 15
第參章 研究方法 17
第一節 預測變數 17
第二節 研究架構 23
第三節 集群減少多數抽樣技術 32
第四節 分類迴歸樹 36
第五節 支援向量機 37
第六節 疾病預測模型之評估 40
第肆章 實證研究 43
第一節 實證資料描述 43
第二節 疾病危險因子分析模式:階段一 43
第三節 疾病危險因子分析模式:階段二 50
第四節 疾病危險因子分析模式:階段三 59
第五節 疾病危險因子之驗證 60
第伍章 結論與建議 77
第一節 結論 77
第二節 未來研究建議 78
參考文獻 79
附錄一 預測變數之ICD-9-CM診斷碼 99
附錄二 研究對象之描述性簡介 103
附錄三 不同資料探勘技術於疾病預測模型之分類績效 109

表目錄
表1-1-1 西元2006-2013年臺灣透析發生率 2
表3-2-1 透析治療之醫令代碼表 26
表3-2-2 研究對象篩選流程表 26
表3-2-3 目標變數定義表 27
表3-2-4 集合變數彙整表 28
表3-2-5 糖尿病併發症之子變數整理表 30
表3-2-6 糖尿病腎病變惡化因子之子變數整理表 31
表3-3-1 集群減少多數抽樣技術之操作步驟 34
表3-6-1 混淆矩陣 41
表4-2-1 ward法於各群集數目之R2及SPR結果彙整表-階段一 44
表4-2-2 kmeans集群技術之分群結果摘要表-階段一 44
表4-2-3 SBC於不同類別比例之多數類別抽樣數量摘要表-階段一 45
表4-2-4 重要集合變數彙整表-階段一 49
表4-3-1 ward法於各群集數目之R2及SPR結果彙整表(1:1)-階段二 51
表4-3-2 ward法於各群集數目之R2及SPR結果彙整表(2:1)-階段二 51
表4-3-3 ward法於各群集數目之R2及SPR結果彙整表(3:1)-階段二 52
表4-3-4 kmeans集群技術之分群結果摘要表-階段二 52
表4-3-5 SBC於不同類別比例之多數類別抽樣數量摘要表-階段二 53
表4-3-6 交集與聯集變數組合彙整表 56
表4-3-7 訓練資料集之摘要表 57
表4-3-8 類別比例1:1之相對重要性大於5%的交集組合-accuracy 57
表4-3-9 類別比例1:1之相對重要性大於5%的交集組合-f-measure 58
表4-3-10 類別比例1:1之相對重要性大於5%的聯集組合-accuracy 58
表4-3-11 類別比例1:1之相對重要性大於5%的聯集組合-f-measure 58
表4-3-12 SVM分類績效彙整表 59
表4-4-1 SVM重要變數組合之聯集結果表 60
表4-5-1 CART篩選之其餘疾病危險因子 61
表4-5-2 疾病危險因子之分類績效彙整表(1)-不考慮糖尿病病程 62
表4-5-3 疾病危險因子之分類績效彙整表(2)-不考慮糖尿病病程 63
表4-5-4 疾病危險因子之分類績效彙整表(1)-糖尿病病程小於五年 64
表4-5-5 疾病危險因子之分類績效彙整表(2)-糖尿病病程小於五年 65
表4-5-6 疾病危險因子之分類績效彙整表(1)-糖尿病病程大於五年 66
表4-5-7 疾病危險因子之分類績效彙整表(2)-糖尿病病程大於五年 67
表4-5-8 不同病程條件之疾病危險因子f-measure比較表 68
表4-5-9 不同病程條件之透析發生率比較表 68
表4-5-10 全部研究對象與三年內進入透析階段者之年紀分配表 69
表4-5-11 糖尿病腎病變的ICD-9-CM 診斷碼 70
表4-5-12 疾病危險因子之分類績效彙整表-與糖尿病腎病變之比較 70
表4-5-13 CART分類績效彙整表 72
表4-5-14 BN分類績效彙整表 73
表4-5-15 CART重要變數組合之聯集結果表 74
表4-5-16 BN重要變數組合之聯集結果表 74
表4-5-17 類別比例1:1之分類績效比較彙整表 75
表4-5-18 類別比例2:1之分類績效比較彙整表 75
表4-5-19 類別比例3:1之分類績效比較彙整表 76

圖目錄
圖1-3-1 研究流程圖 6
圖3-2-1 疾病危險因子分析模式架構圖-(a)階段一 (b)階段二 24
圖3-2-2 疾病危險因子分析模式架構圖-階段三 25
圖3-5-1 線性支援向量機於超平面進行區分示意圖 39
圖4-1-1 資料集類別比例分配圓餅圖 43
圖4-2-1 集合變數抽樣集相對重要性5%以上之長條圖(1:1)-階段一 47
圖4-2-2 集合變數抽樣集相對重要性4%以上之長條圖(2:1)-階段一 47
圖4-2-3 集合變數抽樣集相對重要性3%以上之長條圖(3:1)-階段一 48
圖4-3-1 子變數抽樣集相對重要性3%以上之長條圖(1:1)-階段二 54
圖4-3-2 子變數抽樣集相對重要性3%以上之長條圖(2:1)-階段二 54
圖4-3-3 子變數抽樣集相對重要性3%以上之長條圖(3:1)-階段二 55

中文部分
1.行政院衛生署國民健康局(2010)。慢性腎臟病防治手冊(編號:978-986-02-6860-7)。台北市:台灣腎臟醫學會。

中文網路部分
1.衛生福利部健康保險署(2014)。102年全民健康保險統計,http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&menu_id=1023&WD_ID=1043&webdata_id=4639#content (2015/3/1)。
2.衛生福利部健康保險署(2014)。臺灣透析相關數據,http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&menu_id=1027&webdata_id=4565&WD_ID=1076 (2015/3/1)。

英文部分
1.Almdal, T., Scharling, H., Jensen, J. S., & Vestergaard, H. (2004). The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med, 164(13), 1422-1426.
2.Al‐Rubeaan, K., El‐Asrar, A., Ahmed, M., Youssef, A. M., Subhani, S. N., Ahmad, N. A., Alguwaihes, A., Alotaibi, M. S., Al-Ghamdi, A., & Ibrahim, H. M. (2014). Diabetic retinopathy and its risk factors in a society with a type 2 diabetes epidemic: A Saudi National Diabetes Registry‐based study. PLoS One, 93(2), 140-147.
3.Altincay, H. and Ergun, C. (2004). “Clustering based under-sampling for improving speaker verification decisions using AdaBoost.” In A. Fred, T. Caelli, R. P. W. Duin, A. Campilho, & D. DeRidder (eds.), Structural, Syntactic, and Statistical Pattern Recognition, Proceedings (Vol. 3138, pp. 698-706). Berlin: Springer-Verlag Berlin.
4.Alwakeel, J. S., Al-Suwaida, A., Isnani, A. C., Al-Harbi, A., & Alam, A. (2009). Concomitant macro and microvascular complications in diabetic nephropathy. Saudi journal of kidney diseases and transplantation, 20(3), 402-409.
5.Anderberg, M. R. (1973). Cluster Analysis for Applications. NY: Academic Press.
6.Arsanjani, R., Dey, D., Khachatryan, T., Shalev, A., Hayes, S. W., Fish, M., Nakanishi, R., Germano, G., Berman, D. S., & Slomka, P. (2014). Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. Journal of Nuclear Cardiology, DOI: 10.1007/s12350-014-0027-x.
7.Asadollahi-Baboli, M. (2012). Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods. Environmental toxicology and pharmacology, 34(3), 826-831.
8.Assogba, F. G., Couchoud, C., Hannedouche, T., Villar, E., Frimat, L., Fagot-Campagna, A., Jacquelinet, C., & Stengel, B. (2014). Trends in the epidemiology and care of diabetes mellitus-related end-stage renal disease in France, 2007–2011. Diabetologia, 57(4), 718-728.
9.Baigent, C., Keech, A., Kearney, P. A., Blackwell, L., Buck, G., Pollicino, C., Kirby, A., Sourjina, T., Peto, R., Collins, R., & Simes, R. (2005). Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 366(9493), 1267-1278.
10.Balov, N. (2013). A categorical network approach for discovering differentially expressed regulations in cancer. BMC medical genomics, 6(Suppl 3), 1.
11.Barrett-Connor, E., & Khaw, K. T. (1988). Diabetes mellitus: an independent risk factor for stroke? American journal of epidemiology, 128(1), 116-123.
12.Berry, M. J. & Linoff, G. (1997). Data mining techniques : For marketing, sales, and customer support. NY: John Wiley & Sons, Inc.
13.Bild, D. E., Selby, J. V., Sinnock, P., Browner, W. S., Braveman, P., & Showstack, J. A. (1989). Lower-extremity amputation in people with diabetes: epidemiology and prevention. Diabetes care, 12(1), 24-31.
14.Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (ed.), Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp.144-152). Pittsburgh, PA: ACM Press.
15.Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. CA: Wadsworth.
16.Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
17.Cabena, P., Hadjinaian, P. O., Stadler, R., Verhees, J., & Zanasi, A. (1997). Discovering data mining from concept to implementation. NJ: Prentice-Hall.
18.Cai, B., & Jiang, X. (2014). A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. Journal of biomedical informatics, 48, 114-121.
19.Caramori, M. L., Fioretto, P., & Mauer, M. (2000). The need for early predictors of diabetic nephropathy risk: Is albumin excretion rate sufficient? Diabetes, 49(9), 1399-1408.
20.Castro, C. L., & Braga, A. P. (2013). Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. Neural Networks and Learning Systems, IEEE Transactionson, 24(6), 888-899.
21.Chen, M. C., Chen, L. S., Hsu, C. C., & Zeng, W. R. (2008). An information granulation based data mining approach for classifying imbalanced data. Information Sciences, 178(16), 3214-3227.
22.Chen, M. S., Wang, C. C., & Wang, L. Y. (2008). Applying decision tree to explore critical factors in developing diabetes among employees in high-tech industry. Journal of Health Management, 6, 135-146.
23.Chew, E. Y., Mills, J. L., Metzger, B. E., Remaley, N. A., Jovanovic-Peterson, L., Knopp, R. H., Conley, M., Rand, L., Simpson, J. L., & Holmes, L. B. (1995). Metabolic control and progression of retinopathy: The diabetes in early pregnancy study. Diabetes care, 18(5), 631-637.
24.Christiansen, J. S., Gammelgaard, J., Tronier, B., Svendsen, P. A., & Parving, H. H. (1982). Kidney function and size in diabetics before and during initial insulin treatment. Kidney int, 21(5), 683-688.
25.Chung, H. Y., Ho, C. H., & Hsu, C. C. (2011). Support vector machines using bayesian-based approach in the issue of unbalanced classifications. Expert Systems with Application, 38(9), 11447-11452.
26.Cohen, G., Hilario, M., Sax, H., Hugonnet, S., & Geissbuhler, A. (2006). Learning from imbalanced data in surveillance of nosocomial infection. Artificial Intelligence in Medicine, 37(1), 7-18.
27.Crook, E. D., Penumalee, S., Gavini, B., & Filippova, K. (2005). Hepatitis C is a predictor of poorer renal survival in diabetic patients. Diabetes Care, 28(9), 2187-2191.
28.Davis, T. M., Brown, S. G., Jacobs, I. G., Bulsara, M., Bruce, D. G., Davis, W. A. (2010). Determinants of severe hypoglycemia complicating type 2 diabetes: the Fremantle diabetes study. The Journal of Clinical Endocrinology & Metabolism, 95(5), 2240-2247. 
29.DeBoer, I. H., Rue, T. C., Cleary, P. A., Lachin, J. M., Molitch, M. E., Steffes, M. W., Sun, W., Zinman, B., Brunzell, J. D., White, N. H., Danis, R. P., Davis, M. D., Hainsworth, D., Hubbard, L. D., & Nathan, D. M. (2011). Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: An analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Archives of internal medicine, 171(5), 412-420.
30.DeFronzo, R. A., Matsuda, M., & Barrett, E. J. (1994). Diabetic ketoacidosis: A combined metabolic-nephrologic approach to therapy. Diabetes Reviews, 2(2), 209-238.
31.Durvasula, R. V., & Shankland, S. J. (2008). Activation of a local renin angiotensin system in podocytes by glucose. American Journal of Physiology-Renal Physiology, 294(4), 830-839.
32.Emamjomeh, A., Goliaei, B., Zahiri, J., & Ebrahimpour, R. (2014). Predicting protein–protein interactions between human and hepatitis C virus via an ensemble learning method. Molecular BioSystems, 12(10), 3147-3154.
33.Ertekin, S., Huang, J., & Giles, C. L. (2007). “Active learning for class imbalance problem.” In K. Wessel (ed.), Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp.823-824). NY: ACM Press.
34.Faulhaber-Walter, R., Chen, L., Oppermann, M., Kim, S. M., Huang, Y., Hiramatsu, N., Mizel, D., Kajiyama, H., Zerfas, P., Briggs, J. P., Kopp, J. B., & Schnermann, J. (2008). Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. Journal of the American Society of Nephrology, 19(4), 722-730. 
35.Fernández, A., García, S., del Jesus, M. J., & Herrera, F. (2008). A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets and Systems, 159(18), 2378-2398.
36.Fernández, A., del Jesus, M. J., & Herrera, F. (2009). On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Systems with Applications, 36(6), 9805-9812.
37.Franconi, F., Campesi, I., Occhioni, S., & Tonolo, G. (2012). Sex-gender differences in diabetes vascular complications and treatment. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 12(2), 179-196.
38.Fried, L. F., Orchard, T. J., & Kasiske, B. L. (2001). Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney international, 59(1), 260-269.
39.Fu, C. C., Chang, C. J., Tseng, C. H., Chen, M. S., Kao, C. S., Wu, T. J., Wu, H. P., Chuang, L. M., Chen, C. J., & Tai, T. Y. (1993). Development of macrovascular diseases in NIDDM patients in northern Taiwan: A 4-yr follow-up study. Diabetes Care, 16(1), 137-143.
40.Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. Y. (2004). Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New England Journal of Medicine, 351(13), 1296-1305.
41.Gorbachinsky, I., Akpinar, H., & Assimos, D. G. (2010). Metabolic syndrome and urologic diseases. Reviews in urology, 12(4), 157-180.
42.Gromski, P. S., Correa, E., Vaughan, A. A., Wedge, D. C., Turner, M. L., & Goodacre, R. (2014). A comparison of different chemometrics approaches for the robust classification of electronic nose data. Analytical and bioanalytical chemistry, 406(29), 7581-7590.
43.Group, S. C. (2010). Study of Heart and Renal Protection (SHARP): Randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. American heart journal, 160(5), 785-794.
44.Gu, X., Ni, T., & Wang, H. (2014). New fuzzy support vector machine for the class imbalance problem in medical datasets classification. The Scientific World Journal, ID: 536434, Pages: 12.
45.Guyon, I., Matic, N., & Vapnik, V. (1996). “Discovering informative patterns and data cleaning.” In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy, (eds.), Advances in knowledge discovery and data mining (pp.181-203). Cambridge, MA: MIT Press.
46.Hachesu, P. R., Ahmadi, M., Alizadeh, S., & Sadoughi, F. (2013). Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthcare informatics research, 19(2), 121-129.
47.Hägg, S., Thorn, L. M., Forsblom, C. M., Gordin, D., Saraheimo, M., Tolonen, N. (2014). Different risk factor profiles for ischemic and hemorrhagic stroke in type 1 diabetes mellitus. Stroke, 45(9), 2558-2562.
48.He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Trans. Knowledge and Data Engineering, 21(9), 1263-1284.
49.Heilig, C. W., Concepcion, L. A., Riser, B. L., Freytag, S. O., Zhu, M., & Cortes, P. (1995). Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. Journal of Clinical Investigation, 96(4), 1802-1814.
50.Hill, T., & Lewicki, P. (2006). Statistics Methods and Applications (1th ed.). OK: StatSoft, INC.
51.Hostetter, T. H., Rennke, H. G., & Brenner, B. M. (1982). The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. The American journal of medicine, 72(3), 375-380.
52.Hsiao, Y. C., & Chien, M. N. (2006). Severe hypoglycemia in type 2 diabetes: A hospital-based retrospective study. J Intern Med Taiwan, 17, 73-77.
53.Hsieh, M. C., Hsieh, Y. T., Cho, T. J., Chen, J. F., Lin, S. D., Chen, H. C., & Tu, S. T. (2011). Remission of diabetic nephropathy in type 2 diabetic Asian population: Role of tight glucose and blood pressure control. European journal of clinical investigation, 41(8), 870-878.
54.Hsu, C. C., Wang, K. S., & Chang, S. H. (2011). Bayesian decision theory for support vector machines: Imbalance measurement and feature optimization. Expert Systems with Application, 38(5), 4698-4704.
55.Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification (Tech. Rep.). Taipei: National Taiwan University.
56.Hu, J., He, X., Yu, D. J., Yang, X. B., Yang, J. Y., & Shen, H. B. (2014). A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction. PloS one, 9(9), ID: 107676.
57.Huang, J. F., Chuang, W. L., Dai, C. Y., Ho, C. K., Hwang, S. J., Chen, S. C., Lin, Z. Y., Wang, L. Y., Chang, W. Y., & Yu, M. L. (2006). Viral hepatitis and proteinuria in an area endemic for hepatitis B and C infections: another chain of link? Journal of internal medicine, 260(3), 255-262.
58.Huang, W., Huang, J., Liu, Q., Lin, F., He, Z., Zeng, Z., & He, L. (2014). Neutrophil–lymphocyte ratio is a reliable predictive marker for early‐stage diabetic nephropathy. Clinical endocrinology, 82(2), 229-233.
59.Ichihara, A., Hayashi, M., Kaneshiro, Y., Suzuki, F., Nakagawa, T., Tada, Y., Koura, Y., Nishiyama, A., Okada, H., Uddin, M. N., Nabi, A. H., Ishida, Y., Inagami, T., & Saruta, T. (2004). Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. Journal of Clinical Investigation, 114(8), 1128-1135.
60.Iseki, K., Ikemiya, Y., Inoue, T., Iseki, C., Kinjo, K., & Takishita, S. (2004). Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. American journal of kidney diseases, 44(4), 642-650.
61.Ito, S. (2010). Treatment strategies according to the stage of diabetic nephropathy. Nihon Rinsho, 68(suppl 9), 465-471.
62.Jeerakathil, T., Johnson, J. A., Simpson, S. H., & Majumdar, S. R. (2007). Short-term risk for stroke is doubled in persons with newly treated type 2 diabetes compared with persons without diabetes a population-based cohort study. Stroke, 38(6), 1739-1743. 
63.Ji, J., Ling, X. B., Zhao, Y., Hu, Z., Zheng, X., Xu, Z., Wen, Q., Kastenberg, Z. J., Li, P., Abdullah, F., Brandt, M. L., Ehrenkranz, R. A., Harris, M. C., Lee, T. C., Simpson, B. J., Bowers, C., Moss, R. L., & Sylvester, K. G. (2014). A data-driven algorithm integrating clinical and laboratory features for the diagnosis and prognosis of necrotizing enterocolitis. PloS one, 9(2), ID: 89860.
64.Jiang, X., Cai, B., Xue, D., Lu, X., Cooper, G. F., & Neapolitan, R. E. (2014). A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets. Journal of the American Medical Informatics Association, 21(2), 312-319.
65.Kelly, K. J., Liu, Y., Zhang, J., Goswami, C., Lin, H., & Dominguez, J. H. (2013). Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiological genomics, 45(16), 710-719.
66.Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC medical informatics and decision making, 11(1), 51.
67.Kitabchi, A. E., Umpierrez, G. E., Murphy, M. B., Barrett, E. J., Kreisberg, R. A., Malone, J. I., & Wall, B. M. (2001). Management of hyperglycemic crises in patients with diabetes. Diabetes care, 24(1), 131-153.
68.Kitabchi, A. E., Umpierrez, G. E., Murphy, M. B., Barrett, E. J., Kreisberg, R. A., Malone, J. I., & Wall, B. M. (2004). Hyperglycemic crises in diabetes. Diabetes care, 27(Suppl 1), 94-102.
69.Kofoed-Enevoldsen, A., Jensen, T., Borch-Johnsen, K., & Deckert, T. (1987). Incidence of retinopathy in type I [insulin-dependent] diabetes: Association with clinical nephropathy. Journal of Diabetic Complications, 1(3), 96-99.
70.Krolewski, A. S., Warram, J. H., & Christlieb, A. R. (1994). Hypercholesterolemia--a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney international. Supplement, 45, 125-131.
71.Kubat, M., & Matwin, S. (1997). “Addressing the curse of imbalanced training sets: One-sided selection.” In D. Fisher (ed.), Machine Learning-International Workshop then Conference (pp.179-186). Nashville, TN: Morgan Kaufmann Publishers, INC.
72.Lee, C. C., Chen, S. H., & Chiang, Y. C. (2007). Classification of liver disease from CT images using a support vector machine. Journal of Advanced Computational Intelligence and Intelligent Informatics, 11(4), 396-402.
73.Leung, R. K., Wang, Y., Ma, R. C., Luk, A. O., Lam, V., Ng, M., So, W. Y., Tsui, S. K., & Chan, J. C. (2013). Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: A prospective case-control cohort analysis. BMC nephrology, 14(1), 162.
74.Levey, A. S., & Coresh, J. (2012). Chronic kidney disease. Lancet, 379(9811), 165-180.
75.Li, X., Ying, W., Tuo, J., Li, B., & Liu, W. (2004). “Applications of classification trees to consumer credit scoring methods in commercial banks.” In A. H. Thissen. Will (ed.), 2004 IEEE International Conference on Systems, Man and Cybernetics. (vol. 5, pp.4112-4117). The Hague, Netherlands: IEEE Press.
76.Liu, X., Li, N. S., Lv, L. S., Huang, J. H., Tang, H., Chen, J. X., Ma, H. J., Wu, X. M., & Lou, T. Q. (2013). A comparison of the performances of an artificial neural network and a regression model for GFR estimation. American Journal of Kidney Diseases, 62(6), 1109-1115.
77.Luetscher, J. A., Kraemer, F. B., Wilson, D. M., Schwartz, H. C., & Bryer-Ash, M. (1985). Increased plasma inactive renin in diabetes mellitus: A marker of microvascular complications. New England Journal of Medicine, 312(22), 1412-1417.
78.Mahmood, D., Singh, B. K., & Akhtar, M. (2009). Diabetic neuropathy: Therapies on the horizon. Journal of Pharmacy and Pharmacology, 61(9), 1137-1145.
79.Mani, I., & Zhang, I. (2003, August). KNN approach to unbalanced data distributions: A case study involving information extraction. In N. V. Chawla (Chair), Work-shop on Learning from Imbalanced Datasets. ICML 2003, Washington, DC.
80.Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering algorithms and validity indices. Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), 1650-1654.
81.Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 1023-1032.
82.Mogensen, C. E., & Christensen, C. K. (1984). Predicting diabetic nephropathy in insulin-dependent patients. New England Journal of Medicine, 311(2), 89-93.
83.Mogensen, C. E., Christensen, C. K., & Vittinghus, E. (1983). The stages in diabetic renal disease: With emphasis on the stage of incipient diabetic nephropathy. Diabetes, 32(Suppl 2), 64-78.
84.Mohammadzadeh, F., Noorkojuri, H., Pourhoseingholi, M. A., Saadat, S., & Baghestani, A. R. (2015). Predicting the probability of mortality of gastric cancer patients using decision tree. Irish Journal of Medical Science, 184(2), 277-284.
85.Mooradian, A. D. (2009). Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice endocrinology & metabolism, 5(3), 150-159.
86.Premaratne, E., Verma, S., Ekinci, E. I., Theverkalam, G., Jerums, G., & MacIsaac, R. J. (2014). The impact of hyperfiltration on the diabetic kidney. Diabetes & metabolism, 41(1), 5-17.
87.Put, R., Xu, Q. S., Massart, D. L., & Vander Heyden, Y. (2004). Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure–retention relationship studies. Journal of Chromatography A , 1055(1), 11-19.
88.Ravid, M., Brosh, D., Ravid-Safran, D., Levy, Z., & Rachmani, R. (1998). Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Archives of internal medicine, 158(9), 998-1004.
89.Ribas Ripoll, V. J., Vellido, A., Romero, E., & Ruiz-Rodríguez, J. C. (2014). Sepsis mortality prediction with the quotient basis kernel. Artificial intelligence in medicine, 61(1), 45-52.
90.Rosell, M., Kann, V., & Litton, J. E. (2004, September). Comparing comparisons: Document clustering evaluation using two manual classifications. ICON 2004, India.
91.Rossing, P., Rossing, K., Jacobsen, P., & Parving H. H. (1996). Diabetic nephropathy: Unchanged occurrence in patients with insulin dependent diabetes mellitus. Ugeskr Laeger, 158(42), 5940-5943.
92.Ruiz-Torres, P., Lucio, J., González-Rubio, M., Rodríguez-Puyol, M., & Rodríguez-Puyol, D. (1997). Oxidant/antioxidant balance in isolated glomeruli and cultured mesangial cells. Free Radical Biology and Medicine, 22(1), 49-56.
93.Schölkopf, B., & SmolaA, J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MA: MIT Press.
94.Seliger, S. L., Davis, C., & Stehman-Breen, C. (2001). Gender and the progression of renal disease. Current opinion in nephrology and hypertension, 10(2), 219-225.
95.Selvin, E., Marinopoulos, S., Berkenblit, G., Rami, T., Brancati, F. L., Powe, N. R., & Golden, S. H. (2004). Meta-analysis: Glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Annals of internal medicine, 141(6), 421-431.
96.Sheikhbahaei, S., Fotouhi, A., Hafezi-Nejad, N., Nakhjavani, M., & Esteghamati, A. (2014). Serum uric acid, the metabolic syndrome, and the risk of chronic kidney disease in patients with type 2 diabetes. Metabolic syndrome and related disorders, 12(2), 102-109. 
97.Shelbaya, S., Amer, H., Seddik, S., Allah, A. A., Sabry, I. M., Mohamed, T., & El-Mosely, M. (2012). Study of the role of interleukin-6 and highly sensitive C-reactive protein in diabetic nephropathy in type 1 diabetic patients. Eur Rev Med PharmacolSci, 16(2), 176-182.
98.Shikata, K. I., & Makino, H. (2001). Role of macrophages in the pathogenesis of diabetic nephropathy. Contributions to nephrology, 134, 46-54.
99.Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model, Expert Systems with Applications, 28(1), 127-135.
100.Shinohara, M., Thornalley, P. J., Giardino, I., Beisswenger, P., Thorpe, S. R., Onorato, J., & Brownlee, M. (1998). Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. Journal of Clinical Investigation, 101(5), 1142-1147.
101.Simmons, R. W., Richardson, C., & Pozos, R. (1997). Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes research and clinical practice, 36(3), 153-160.
102.Sobel, B. E. (2007). Optimizing cardiovascular outcomes in diabetes mellitus. The American journal of medicine, 120(9), 3-11.
103.Soma, J., Saito, T., Taguma, Y., Chiba, S., Sato, H., Sugimura, K., Ogawa, S., & Ito, S. (2000). High prevalence and adverse effect of hepatitis C virus infection in type II diabetic-related nephropathy. Journal of the American Society of Nephrology, 11(4), 690-699.
104.Song, L., Langfelder, P., & Horvath, S. (2013). Random generalized linear model: A highly accurate and interpretable ensemble predictor. BMC bioinformatics, 14(1), ID: 5.
105.Song, T., & Gu, H. (2014). Discriminative motif discovery via simulated evolution and random under-sampling. PloS one, 9(2), ID: 87670.
106.Spaleniak, S., Korzeniewska-Dyl, I., & Moczulski, D. (2014). Serum uric acid concentration is associated with early changes of glomerular filtration rate in patients with diabetes type 1 without increased albumin excretion. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskieg, 37(220), 217-220.
107.Stack, A. G., & Bloembergen, W. E. (2001). A cross-sectional study of the prevalence and clinical correlates of congestive heart failure among incident US dialysis patients. American journal of kidney diseases, 38(5), 992-1000.
108.Su, C. T., Yang, C. H., Hsu, K. H., & Chiu, W. K. (2006). Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data. Computers & Mathematics with Applications, 51(6), 1075-1092.
109.Tabaei, B. P., & Herman, W. H. (2002). A multivariate logistic regression equation to screen for diabetes development and validation. Diabetes Care, 25(11), 1999-2003.
110.Tang, S. C., Leung, J. C., & Lai, K. N. (2011). Diabetic tubulopathy: An emerging entity. Diabetes and the Kidney, 170, 124-134.
111.Tannus, L. R. M., Drummond, K. R. G., da Silva Clemente, E. L., da Matta, M. D. F. B., & Gomes, M. B. (2014). Predictors of cardiovascular autonomic neuropathy in patients with type 1 diabetes. Frontiers in endocrinology, 5, ID: 191.
112.Tolonen, N., Forsblom, C., Mäkinen, V. P., Harjutsalo, V., Gordin, D., Feodoroff, M., Sandholm, N., Thorn, L. M., Wadén, J., Taskinen, M. R., Groop, P. H., (2014). Different lipid variables predict incident coronary artery disease in patients with type 1 diabetes with or without diabetic nephropathy: The FinnDiane Study. Diabetes care, 37(8), 2374-2382.
113.Tou, J. T., & Gonzalez, R. C. (1974). Pattern Recognition Principles. MA: Addison-Wesley Publications.
114.Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. NY: Springer Press.
115.Vapnik, V., Golowich, S. E., & Smola, A. (1997). “Support vector method for function approximation, regression estimation, and signal processing.” In M. Mozer, M. Jordan, & T. Petsche (eds.), Advances in neural information processing systems (pp.281-287). Cambridge, MA: MIT Press.
116.Vijan, S., & Hayward, R. A. (2003). Treatment of hypertension in type 2 diabetes mellitus: Blood pressure goals, choice of agents, and setting priorities in diabetes care. Annals of internal medicine, 138(7), 593-602.
117.Voulgari, C., Katsilambros, N., & Tentolouris, N. (2011). Smoking cessation predicts amelioration of microalbuminuria in newly diagnosed type 2 diabetes mellitus: A 1-year prospective study. Metabolism, 60(10), 1456-1464. 
118.Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
119.Wolfsdorf, J., Craig, M. E., Daneman, D., Dunger, D., Edge, J., Warren Lee, W. R., Rosenbloom, A., Sperling, M. A., & Hanas, R. (2007). Diabetic ketoacidosis. Pediatric diabetes, 8(1), 28-43.
120.Worku, D., Hamza, L., & Woldemichael, K. (2010). Patterns of diabetic complications at jimma university specialized hospital, southwest ethiopia. Ethiopian journal of health sciences, 20(1), 33-39.
121.Wu, C. C., Sytwu, H. K., Lu, K. C., & Lin, Y. F. (2011) Role of T cells in type 2 diabetic nephropathy. Experimental Diabetes Research. 2011, ID: 514738.
122.Yang, W. C., & Hwang, S. J. (2008). Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: The impact of national health insurance. Nephrology Dialysis Transplantation, 23(12), 3977-3982.
123.Yang, W. C., Hwang, S. J., Chiang, S. S., Chen, H. F., & Tsai, S. T. (2001). The impact of diabetes on economic costs in dialysis patients: experiences in Taiwan. Diabetes research and clinical practice, 54(Suppl 1), 47-54.
124.Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718-5727.
125.Yoo, T. K., Kim, S. K., Choi, S. B., Kim, D. Y., & Kim, D. W. (2013, July). Interpretation of movement during stair ascent for predicting severity and prognosis of knee osteoarthritis in elderly women using support vector machine. In K. Sunagawa (Chair). Medical decision making. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan.
126.Young, B. A., Lin, E., Von Korff, M., Simon, G., Ciechanowski, P., Ludman, E. J., Everson-Stewart, S., Kinder, L., Oliver, M., Boyko, E. J., & Katon, W. J. (2008). Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. The American journal of managed care, 14(1), 15-23.
127.Yu, L., Su, Y., Paueksakon, P., Cheng, H., Chen, X., Wang, H., Harris, R. C., Zent, R., & Pozzi, A. (2012). Integrin α1/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney international, 81(11), 1086-1097.
128.Yu, R., & Abdel-Aty, M. (2013). Utilizing support vector machine in real-time crash risk evaluation. Accident Analysis & Prevention, 51, 252-259.
129.Zambrano-Galván, G., Reyes-Romero, M. A., Lazalde, B., Rodríguez-Morán, M., & Guerrero-Romero, F. (2014). Risk of microalbuminuria in relatives of subjects with diabetic nephropathy: A predictive model based on multivariable dimensionality reduction approach. Clinical nephrology, 83(2), 86-92.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊