跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀柏豪
研究生(外文):Bo-hao, Ji
論文名稱:薄膜蒸餾串聯硫酸吸收及冰水冷凝回收廢水中氨氮之研究
論文名稱(外文):Ammonia recovery from wastewater by membrane distillation coupling sulfuric acid absorption and ice water condensation
指導教授:黃文鑑黃文鑑引用關係
口試委員:吳志超陳冠中黃文鑑
口試日期:2015-07-20
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:氨氮薄膜蒸餾冰水冷凝回收
外文關鍵詞:AmmoniaMembrane distillationIce watercondensationRecovery
相關次數:
  • 被引用被引用:2
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
近年來對於晶圓及半導體產業的放流水氨氮(NH3)限值將更進一步施行更嚴格的限值規範,由101年限值75 mg/L 調低至103年30 mg/L;NH3對於環境的危害影響甚大,造成水體優養化、溶氧量減少甚至在自來水水處理時加氯量也必須增加造成處理成本更大的支出,目前的廢水處理設施中對於氨氮的去除十分有限,將會嚴重衝擊半導體等產業,因此必須找尋處理氨氮的有效方法進而解決其產業含氨氮(NH4+)廢水處理之困難,並減少對於環境的衝擊及危害。本研究中主要以氨氮回收為主,實驗設計藉由薄膜分離將廢水中之NH3氣提並利用硫酸將NH3吸收,控制參數包括溫度、pH值及硫酸濃度。另一組試驗是應用冰水將蒸發之NH3氣藉由文氏管將NH3氣溶於冰水中,獲得高濃度NH3水。
實驗結果顯示在硫酸吸收NH3試驗之最佳硫酸濃度為18 N、溫度為50 ℃和pH = 11,可獲得65 %之回收率;另外利用冰水冷凝回收氨水,在50~70 ℃範圍內溫度越高所回收的氨氮濃度越高,操作溫度最佳條件為70 ℃;在pH值變化之試驗,pH = 11~12範圍內,回收率的增加隨pH值變化較不明顯,判斷pH = 11以上時氨氮之回收效率已達明顯的效果。在人工合成廢水與濕蝕刻清洗廢水的NH3回收率在70 %、66.59 %,皆達良好的回收效果,且目前冰水氨氮最高濃度可達4300 mg/L。

In recent years, it will executed more stringent ammonia(NH3) limits than now day on effluent wastewater in the semiconductor industry, from A.D. 2012 to A.D. 2014, effluent ammonia limits 75 mg/L is down to 30 mg/L;NH3 is harmful very major on the environment, it is caused to eutrophication, reduced the amount of dissolved oxygen in the water, even it increased in greater cost of processing expenses when the amount of chlorine must is increased in the water, in the current, it removal of ammonia is bad in wastewater treatment processes, it will impact the semiconductor and other industries seriously, and therefore it must be found to an effective way to treatment ammonia in the wastewater, and it is reduced the impact and harm on the environment. It main to recover the ammonia in this study, the experimental design is strip NH3 by the membrane distillation in the wastewater and it is absorb NH3 by sulfuric acid, the control parameters is including temperature, pH value and concentration of sulfuric acid. The another experiment is dissolved NH3 gas in ice water by ice water and venturi tube, it obtain high concentrations of NH3 water.
The experimental results show that it is absorb NH3 of the optimum concentration of sulfuric acid is 18 N in the sulfuric acid, the temperature is 50 ℃ and pH = 11, it is obtained the recoveries of 65 %;In addition, it condensed to recovered ammonia by ice water, the temperature is lncreased higher in the range of 50 ~ 70 ℃ when the concentration of ammonia is recovered higher, and the optimum conditions of the temperature is 70 ℃;In pH = 11 to 12 range, the recovery rate is increased not evident with changing in the pH value in the test, in the test is analyzed to recovery rate of ammonia is reached significant results at pH = 11 or more. it is recovered NH3 of 70 %, 66.59 % in the synthetic wastewater and wet etching washing wastewater, they are recovered ammonia so great, and the current the max concentration of ammonia is reached to 4300 mg/L by ice water.

致 謝...........................................I
摘 要..........................................II
Abstract.......................................III
目 錄..........................................V
表 目 錄........................................VII
圖 目 錄........................................VIII
第一章 前言......................................1
1-1 研究緣起............ ........................1
1-2 研究目的.....................................2
第二章 文獻回顧...................................3
2-1 環境中氨氮來源................................3
2-2 光電半導體製造業之製程概述.....................6
2-2-1半導體之材料概述.............................6
2-2-2 浮帶製程...................................8
2-2-3 柴可斯基法.................................8
2-2-4 晶圓切割...................................9
2-2-5 化學機械研磨................................9
2-2-6 互補式金屬氧化物半導體之製程簡介.............10
2-3 光電產業製程廢水種類..........................15
2-4 半導體業廢水氨氮來源..........................17
2-5 氨氮處理技術.................................17
2-5-1 折點加氯法.................................17
2-5-2 離子交換法.................................18
2-5-4 氣提法....................................20
2-5-5 電透析法..................................20
2-5-6 磷酸銨鎂沉澱/結晶..........................20
2-5-7 薄膜處理..................................21
2-6 薄膜蒸餾原理與運用...........................24
2-7 影響薄膜蒸餾傳質因數.........................24
2-8薄膜蒸餾材質之介紹............................27
2-8-1 聚四氟乙烯之介紹...........................27
2-8-2 聚偏氟乙烯之介紹...........................29
2-8-3 聚丙烯之介紹...............................30
第三章 研究方法..................................32
3-1 實驗藥品....................................34
3-1-1 乙醇......................................35
3-1-2 氨水......................................35
3-1-3 氫氧化鈉...................................36
3-1-4 光電產業濕蝕刻清洗之廢水.....................37
3-2 實驗設備.....................................38
3-2-1 氨氣加熱回收設備............................38
3-2-2 氨氣冷凝設備................................44
3-3 氨氮檢測方法-靛酚比色法.......................51
3-4 重金屬檢測-ICP/OES...........................53
第四章 結果與討論.................................56
4-1 薄膜蒸餾串聯硫酸吸收氨氮結果...................56
4-2 薄膜蒸餾串聯冰水冷凝氨氮-人工合成廢水試驗結果... 63
4-3薄膜蒸餾串聯冰水冷凝回收氨氮-實廠廢水試驗結果.... 70
第五章 結論與建議.................................80
5-1結論..........................................80
5-2建議..........................................80
參考文獻.........................................81


Baker, R.W., 2004, “ Membrane technology and applications, second ed, ” John Wiley & Sons, England, pp. 355-392.

Banat, F.A., Simandl, J., 1998, “ Desalination by membrane distillation a parametric study,” Separation Science and Technology, vol. 33, pp. 201-226.

Bao-Shan Xing, Qiong Guo, Guang-Feng Yang, Jue Zhang, Tian-Yue Qin, Peng Li, Wei-Min Ni, Ren-Cun Jin, 2015, “The influences of temperature, salt and calcium concentration on the performance of anaerobic ammonium oxidation (anammox) process, ” Chemical Engineering Journal, vol. 265, pp. 58-66.

Daniel Geisseler, William R., Horwath, 2014, “ Investigating amino acid utilization by soil microorganisms using compound specific stable isotope analysis, ” Soil Biology & Biochemistry, vol.74, pp. 100-105.

Das, A., Abou-Nemeh, I., Chandral, S., Sirkar, K.K., 1998, “ Membrane-moderated stripping process for removing VOCs from Water in a composite hollow fiber module,” Journal of Membrane Science , vol. 148, pp. 257-271.

David H. Van Wagener, Gary T. Rochelle, Eric Chen, 2013, “Modeling of pilot stripper results for CO2 capture by aqueous piperazine, ” International Journal of Greenhouse Gas Control, vol. 12, pp. 280-287.

Ding, Z., Liu, L., Li, Z., Ma, R., Yang, Z., 2006, “ Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations, ” Journal of Membrane Science , vol. 286, pp. 93-103.

Duong, T., Xie, Z., Ng, D., Hoang, M., 2012, “ Ammonia removal from aqueous solution by membrane distillation,” Water and Environment Journal (Early view).

EL-Bourawi, M.S., Khayet, M., Ma, R., Ding, Z., Li, Z., Zhang, X., 2007, “ Application of vacuum membrane distillation for ammonia removal, ” Journal of Membrane Science, vol. 301, pp. 200–209.

Faqian Sun, Bin Sun, Jian Hu, Yangyang He, Weixiang Wu, 2015, “ Organics and nitrogen removal from textile auxiliaries wastewaterwith A2O-MBR in a pilot-scale, ” Journal of Hazardous Materials, vol. 286, pp. 416-424.

Feifei Shao, Changqing Hao, Lei N, Yufeng Zhang, Runhong Du,, Jianqiang Meng, 2014, “Experimental and theoretical research on N – methyl – 2 - pyrrolidone concentration by vacuum membrane distillation using polypropylene hollow fiber membrane, ” Journal of Membrane Science, vol. 452, pp. 157-164.

Haiming Huang, Yang Jiang, Li Ding, 2014, “Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product, ” Bioresource Technology, vol. 172, pp. 253-259.

He Chen, Liang Kong, Yong Wang, 2015, “ Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition, ” Journal of Membrane Science, vol. 487, pp. 109-116.

Jinbo Zhang, Jing Wang, Wenhui Zhong, Zucong Cai, 2015, “ Organic nitrogen stimulates the heterotrophic nitrification rate in an acidic forest soil, ” Soil Biology & Biochemistry, vol. 80, pp. 81-88.

Jinming Duan, Hongda Fang, Bing Su, Jinfang Chen, Jinmei Lin, 2015, “Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater, ” Bioresource Technology, vol. 179, 421-428.

Juang, R.S., Lin, S.H., Yang, M.C., 2005, “ Mass transfer analysis on air stripping of VOCs from water in microporous hollow fibers,” Journal of Membrane Science, vol. 255, pp. 79-87.

Mahmud, H., Kumara, A., Narbaitz, R.M., Matsuura, T., 2000, “ A study of mass transfer in the membrane air-stripping process using microporous polypropylene hollow fibers, ” Journal of Membrane Science, vol. 179, pp. 29–41.

Mahmud, H., Kumara, A., Narbaitz, R.M., Matsuura, T., 2002, “ Mass transport in the membrane air-stripping process using microporous polypropylene hollow fibers,: effect of toluene in aqueous feed, ” Journal of Membrane Science, vol. 209, pp. 207-219.

Malinowska, B., Rakib, M., Durand, G., 2001, “ Ammonia recycling and cadmium confinement in chemical bath deposition of CdS thin layers, ” Progress in Photovoltaics: Research and Applications, vol. 9, pp. 389-404.

Ori Lahav, Yuval Schwartz, Paz Nativ, Youri Gendel, 2013, “Sustainable removal of ammonia from anaerobic-lagoon swine waste effluents using an electrochemically-regenerated ion exchange process, ” Chemical Engineering Journal, vol. 218, pp. 214-222.

Qtaishat, M.R., Banat, F., 2013, “ Desalination by solar powered membrane distillation systems, ” Desalination, vol. 308, pp. 186–197.

Rezakazemi, M., Shirzian, S., Ashrafizadeh, S.N., 2012, “ Simulation of ammonia removal from industrial wastewater streams by means of a hollow fiber membrane contactor, ” Desalination vol. 285, pp. 383-392.

Rui Du, Yongzhen Peng, Shenbin Cao, Shuying Wang, Chengcheng Wu, 2015, “Advanced nitrogen removal from wastewater by combining anammox with partial denitrification, ” Bioresource Technology, vol. 179, pp. 497-504.

Takanobu Masuda, Isao Ogino, Shin R. Mukai, 2013, “ Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability, ” Advanced Powder Technology, vol. 24, pp. 520-524.

Wei Bi, Yiyong Li, Yongyou Hu, 2014, “ Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate, ” Bioresource Technology, vol. 166, pp. 1-8.

Xie, Z., Duong, T., Hoang, M., Nguyen, C., Bolto, B., 2009, “ Ammonia removal by sweep gas membrane distillation, ” Water Research vol. 43, pp. 1693–1699.

Xie, Z., Hoang, M., Duong, T., Ng, D., Singh, P., Ray, P., Reddy, A. V. R., Parashuram, K., Maurya, S., 2012, “ Effect of Membrane Properties on Performance of Membrane Distillation for Ammonia Removal,” Journal of Materials Science Research vol. 1, pp. 37-44.

Xinran Zhang, Weiguang Li, Ernest R. Blatchley III, Xiaoju Wang, Pengfei Ren, 2015, “ UV/chlorine process for ammonia removal and disinfection by-product reduction: Comparison with chlorination, ” ScienceDirect, vol. 68, pp. 804-811.

Yamaguchi Satosh, Ohura Seichiro, Harada Hiroyuki, Akagi kotaro, Yoshiharu Mitoma, Kawakita Hidetaka, Biplob K. Biswas, 2013, “ Simultaneous crystallization of phosphate and potassium as magnesium potassium phosphate using bubble column reactor with draught tube, ” Journal of Environmental Chemical Engineering, vol. 1, pp. 1154-1158.

Yiwei Ma, Suneethi Sundar, Hongkeun Park, Kartik Chandran, 2015, ” The effect of inorganic carbon on microbial interactions in a biofilm nitritationeanammox process, ” ScienceDirect, vol. 70, pp. 246-254.

Youri Gendel, Ori Lahav, 2013, “A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration ” Aquacultural, Engineering , vol. 52, pp. 27-38.

吳蕙如,2013,「以斑馬魚胚胎評估半導體廢水之生物毒性」,國立交通大學環境工程研究所碩士論文。

「含氨氮廢水處理技術研討會」,經濟部技術處,2011。

鍾鼎文,2008,「晶圓廠濕蝕刻機台排水分流系統與氟系廢水處理設施效能評估研究」,國立交通大學工學院專班永續環境科技組碩士論文。

陳彥旻,2003,「半導體業化學機械研磨廢水回收處理再利用技術研究」,國立成功大學環境工程學系碩士論文。

侯瑋妮,2014,「以物化方法處理高濃度氨廢液」,國立聯合大學環境與安全衛生工程學系碩士班碩士論文。

李九龍,2012,「利用中空纖維薄膜接觸器結合硫酸水溶液去除廢液中氨氮之研究-以半導體廠測試之實例」,龍華科技大學化工與材料工程系,龍華科技大學學報第三十二期。

許振銘,2009,「農業迴歸水再利用處理技術」,弘光科技大學環境工程研究所碩士論文。

王文成,2005,「以電聚浮除法處理半導體廢水中之砷」,國立中興大學環境工程學系碩士論文。

姚洋羽,2002,「離子交換法處理含氫氟酸與氟矽酸的半導體廢水之研究」,元智大學化學工程學系碩士論文。

彭淑惠,2014,「含TMAH廢水生物處理及生物毒性減量評估」,國立交通大學工學院永續環境科技學程碩士論文。

侯守威,2011,「薄膜接觸技術處理氨氮廢水之研究」,嘉南藥理科技大學 環境工程與科學系碩士論文。

蕭翔文,2009,「影響本土固氮螺旋菌生長、固氮活性及吲哚乙酸產出因子之研究」,朝陽科技大學應用化學系碩士論文。

高維庭,2014,「以MBR與後脫硝程序處理煉焦廢水中氨氮之可行性研究」,國立高雄第一科技大學環境與安全衛生工程系碩士論文。

林尚儒,2014,「Pantoea sp.降解亞硝酸鹽和氨氮機轉之研究」,國立高雄海洋科技大學海洋生物技術研究所碩士論文。

林陳彥,2005,「以16S rDNA 分子技術探討薄膜生物反應器處理ABS 廢水之硝化菌樣態」,嘉南藥理科技大學環境工程與科學系碩士論文。

蘇揚根,2003,「奈米微氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用」,國立交通大學環境工程研究所碩士論文。

余志良,2012,「L-氨基酸氧化酶的研究進展」,浙江工業大学生物與環境工程学院,中国生物工程雜誌。

曾靖樺,2012,「水中數種藍綠菌與藻類在氯銨消毒程序中亞硝基二銨之生成潛能之研究」,國立成功大學環境工程學系碩士論文。

羅金生,2001,「半導體廠化學機械研磨(CMP)廢水回收再利用可行性評估」,國立臺灣大學環境工程學研究所碩士論文。

潘奕達,2009,「以吹氣捕捉前處理系統量測寬濃度範圍的氨及其亨利常數」,國立清華大學碩士論文。

高振飛,2012,「礫間好氧消化系統應用於高氮磷之合成污水處理之研究」,明智科技大學環境與資源研究所碩士論文。

程嬿儒,1012,「運用電透析技術現地去除地下水中硝酸鹽氮之研究」,嘉南藥理科技大學環境工程與科學系碩士論文。

洪宏瑋,2014,「聚丙烯與生物可降解塑膠合膠研究」,東海大學化學工程與材料工程研究所碩士論文。

萬欽維,2011,「應用無氧/好氧生物程序處理TFT-LCD之含氮有機廢水」,弘光科技大學環境工程研究所碩士論文。

施敏,2001,「半導體元件物理與製作技術」,三版四刷,高立圖書有限公司。

刁建成,2000,「ULSI製程技術」,初版一刷,全華科技圖書股份有限公司。

王建榮、林必窕、林慶福,2000,「半導體平坦化CMP技術」,二版二刷,全華科技圖書股份有限公司。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊