(3.232.129.123) 您好!臺灣時間:2021/03/06 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡慕柔
研究生(外文):Mu-Rou Tsai
論文名稱:探討PGC-1α於乙型轉型生長因子誘導腎臟間質纖維化的角色
論文名稱(外文):The role of PGC-1α in TGF-β1-induced Renal Interstitial Fibrosis
指導教授:楊堉麟楊堉麟引用關係
指導教授(外文):Yu-Lin Yang
口試委員:張榮賢張文騰
口試委員(外文):Long-Sen ChangWen-Teng Chang
口試日期:2015-01-29
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:生物科技系暨生物醫學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:52
中文關鍵詞:腎間質纖維化乙型轉化生長因子PGC-1α
外文關鍵詞:Renal Interstitial FibrosisTGF--β1PGC-1α
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α)是一種轉錄活化因子,參與能量代謝和粒腺體生合成。在糖尿病病患中代謝性疾病和腎纖維化、末期腎病息息相關。在糖尿病大鼠中PGC-1α的活化表現影響肝臟和胰臟β細胞的功能。在本篇研究中我們試著探討PGC-1α在TGF-β1所誘導的腎間質纖維化細胞模型中所扮演的角色。方法:細胞培養腎纖維母細胞(NRK-49F)並利用TGF-β1 (5 ng/ml)24小時刺激誘導,以及轉染pcDNA3.1(1.5 μg/well)、pcDNA3.1-PGC-1α (1.5 μg/well)或PGC-1α-siRNA(10 μM),運用西方墨點試驗和免疫螢光分析PGC-1α、纖維蛋白、第一型膠原蛋白的表現。結果:我們發現在加入TGF-β1後細胞增加纖維蛋白及第一型膠原蛋白的表現,並同時誘導PGC-1α增加(**P<0.01)。在轉染試驗中也發現PGC-1α的表現量增加會誘導纖維蛋白及第一型膠原蛋白的表現,然而在西方墨點法和免疫螢光法中發現轉染PGC-1α-siRNA則會逆轉TGF-β1所誘導纖維蛋白及第一型膠原蛋白的表現(**P<0.01)。此外,在加入5 μM 的 SB431542 (TGFβ-RI)、LY294002 (PI3K/Akt) 和SB203580 (p38 MAPK)的訊息抑制劑後會抑制TGF-β1所誘導增加的PGC-1α。結論:綜合以上結果,我們認為在NRK-49F細胞株中PGC-1α誘導纖維蛋白及第一型膠原蛋白增加是透過TGF-β1誘導 TGFβ-RI、PI3K/Akt和p38 MAPK訊息路徑。這些數據顯示,在腎間質纖維化中PGC-1α 是一個潛在的治療標的。

Peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) is a transcriptional coactivator that regulates energy metabolism and mitochondrial biogenesis. Metabolic syndrome is associated with a higher prevalence of renal fibrosis and end stage renal disease (ESRD) in diabetic patients. PGC-1α expression and activity was increased in the liver and pancreatic β cells in animal models of diabetes mellitus. The aim of present study was to investigate the fibrosis regulatory role of PGC-1α. Method: Cultured NRK-49F cells were treated with TGF-β1 (5 ng/ml) for 24 h to establish an in vitro renal fibrosis model. Cells were transfected with pcDNA3.1 (empty vector, 1.5 μg/well), pcDNA3.1-PGC-1α (1.5 μg/well), or PGC-1α-siRNA (10 μM). Western blotting and Immunofluorescence were used to evaluate the expression of fibronection, type I collagen and PGC-1α Results: TGF-β1-induced an increase in fibronection, type I collagen and PGC-1α by Western blotting assays (##P<0.01). In addition, treatment of pcDNA3.1-PGC-1α significantly induced an increase in fibronectin and type I collagen (#P<0.05). Treatment of PGC-1α-siRNA significantly reversed TGF-β1-induced increases in the level of fibronectin and type I collagen compared to control-siRNA (**P<0.01) according to Western blotting and immunofluorescence analysis. Moreover, 5 μM of SB431542, LY294002 or SB203580, the pathway inhibitors of TGFβ-RI, PI3K/Akt, p38 MAPK respectively, suppressed the TGF-β1-induced increase in the level of PGC-1α (**P<0.01). Conclusion: We suggest that PGC-1α has the potential to regulated renal interstitial fibrosis through TGF-β1-induced TGFβRI, PI3K/Akt and p38 MAPK signaling pathways. Therefore PGC-1α may be used as a potential therapeutic target for treating renal fibrosis.
口試委員審定書 i
致謝 v
中文摘要 vi
英文摘要 viii
縮寫表 x
第一章 緒論 1
一、 腎纖維化之影響 2
二、 腎纖維化之機轉 2
三、 纖維化的生物指標 3
四、 乙型轉化生長因子 4
五、 乙型轉化生長因子的活化路徑和纖維化的調節 5
六、 Peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α) 6
七、 PGC-1α的調節與疾病 7
第二章 研究目的 9
第三章 材料方法 11
一、 材料 12
二、 細胞培養 12
1. 解凍細胞 13
2. 繼代培養 13
3. 冷凍保存 13
4. 訊息傳遞路徑抑制劑 14
三、 細胞檢體製備 14
四、 質體的製備與抽取 15
五、 質體轉染 16
六、 siRNA轉染 16
七、 西方墨點法(Western blotting) 17
八、 免疫螢光法(Immunoflurescence) 18
九、 統計分析 19
第四章 結果 20
一、 TGF-β1誘導纖維蛋白、第一型膠原蛋白、TGFβ-RI、TGFβ-RII、Smads及PGC-1α的影響 21
二、 TGF-β1在不同時間點誘導PGC-1α的影響 21
三、 轉染pcDNA3.1-PGC-1α質體誘導PGC-1α、纖維蛋白和第一型膠原蛋白的影響 21
四、 轉染PGC-1α-siRNA逆轉TGF-β1誘導PGC-1α、纖維蛋白和第一型膠原蛋白的影響 22
五、 SB431542、LY294002、SB203580訊息抑制劑對TGF-β1誘導PGC-1α的影響 23
第五章 結論與討論 24
第六章 圖表 28
第七章 參考文獻 35

Barnes JL, Glass WF 2nd. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib Nephrol. (2011); 169:73-93.

Böttinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. (2002); 13(10):2600-2610.

Campanholle G1, Mittelsteadt K, Nakagawa S, Kobayashi A, Lin SL, Gharib SA, Heinecke JW, Hamerman JA, Altemeier WA, Duffield JS. TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury. PLoS One. (2013); 8(7):e68640.

Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. (2012); 8(7):964-978.

Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G, Nguyen W, Chepetan A, Le TP, Wang L, Xu M, Paik KP, Fogo A, Viollet B, Murphy A, Brosius F, Naviaux RK, Sharma K. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013; 123(11):4888-4899.

Eddy AA. Progression in chronic kidney disease. Adv Chronic Kidney Dis.(2005); 12(4): 353-365.

Finkel T. Cell biology: a clean energy programme. Nature. (2006); 444(7116):151-152.

Franzén P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, Miyazono K. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. (1993); 75(4):681-692.
Gagliardini E, Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. (2006); 17(1-2):89-96.

Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. (2014); 7(1):4.

Grgic I, Duffield JS, Humphreys BD. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. (2012); 27(2):183-193.

Grimaldi B, Sassone-Corsi P. Circadian rhythms: metabolic clockwork. Nature. (2007); 447(7143):386-387.

Han DC, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisense TGF-beta1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. Am J Physiol Renal Physiol. (2000); 278(4):F628-F634.

Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. (2001); 413(6852):179-183.

Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, Imai E Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Invest. (1993); 92(6):2597-2601.

Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. (2004); 18(4):357-368.

Knutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab. (2001); 12(8):360-365.

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest, (2000); 106(7):847-856.

LeRoy EC, Trojanowska MI, Smith EA. Cytokines and human fibrosis. Eur Cytokine Netw. (1990); 1(4):215-219.

Li X, Monks B, Ge Q, Birnbaum MJ. A Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. (2007); 447(7147):1012-1016.

Lin HY, Wang XF, Ng-Eaton E, Weinberg RA, Lodish HF. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell.(1992); 68(4):775-785.

Lin KH, Chen CY, Chen SL, Yen CC, Huang YH, Shih CH, Shen JJ, Yang RC, Wang CS. Regulation of fibronectin by thyroid hormone receptors. J Mol Endocrinol. (2004); 33(2):445-458.

Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. (2005); 1(6):361-370.

Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. (2008); 51(4):615-622.

Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. (2010); 21(2):212-222.
Prasad GV, Huang M, Silver SA, Al-Lawati AI, Rapi L, Nash MM, Zaltzman JS. Metabolic syndrome definitions and components in predicting major adverse cardiovascular events after kidney transplantation. Transpl Int. (2015); 28(1):79-88.

Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell.(2001); 8(5):971-982.

Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. (2003); 24(1):78-90.

Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. (1998); 92(6):829-839.

Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A. (2003); 100(7):4012-4017.

Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. (2009); 54(3):537-543.

Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol. (2009); 327(2):386-398.

Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. (2007) 1; 74(2):196-206.

Sharma K. Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl. (2011); 4(1):113-117.

Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. (2003); 113(6):685-700.

Snyder JJ, Foley RN, Collins AJ. Prevalence of CKD in the United States: a sensitivity analysis using the National Health and Nutrition Examination Survey (NHANES) 1999-2004. Am J Kidney Dis. (2009); 53(2):218-228.

Sporn MB, Roberts AB. TGF-beta: problems and prospects. Cell Regul. (1990); 1(12):875-882.
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol.(2007); 127(5):998-1008.

Westerhausen DR Jr, Hopkins WE, Billadello JJ. Multiple transforming growth factor-beta-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem. (1991); 266(2):1092-1100.

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell.(1999); 98(1):115-124.

Yang YL, Liu YS, Chuang LY, Guh JY, Lee TC, Liao TN, Hung MY, Chiang TA. Bone morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type I transforming growth factor-beta receptors. Endocrinology. (2009); 150(2):727-740.

Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. (2009);19(1):128-139.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔