跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/24 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉智
研究生(外文):Wei-Chih Huang
論文名稱:生質丁醇部分氧化及氧化蒸氣重組法產出富氫合成氣體特性探討
論文名稱(外文):Hydrogen-rich syngas production from bio-butanol by partial oxidation and oxidative steam reforming
指導教授:洪榮芳彭相武彭相武引用關係
指導教授(外文):Rong-Fang HorngShiang-Wuu Perng
口試委員:李秋煌盧昭暉吳鴻文
口試委員(外文):Chiou-Hwang LeeJau-Huai LuHurng-Wen Wu
口試日期:2015-07-03
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:丁醇部分氧化重組氧化蒸氣重組熱力分析
外文關鍵詞:ButanolPartial Oxidation ReformingOxidative Steam ReformingThermodynamic analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本研究是將生質丁醇為主要燃料,進行重組產出之富氫合成氣體研究。配合兩種不同重組方式,分別以部分氧化法(Partial Oxidation Reforming, POX)與氧化蒸氣重組法(Oxidation Steam Reforming, OSR),並配合理論平衡計算進行分析比較。研究內容主要分為二大部份,首先探討丁醇於部分氧化法之產氫特性以及找出其可重組範圍區間,進行參數分析;第二部分則是探討丁醇於氧化蒸氣重組反應的合成氣體產率、轉化效率、重組效率、空間速度等。
首先由部份氧化法理論分析看出,O2/C4H9OH莫耳比為1.5時,其反應溫度在700oC以上,積碳現象幾乎趨近於零。在不同參數條件下進行實驗測試,最大的重組區間則落在重組輸入燃料熱值為1.5kW;最佳氫氣濃度與產率以及一氧化碳濃度分別為30.6%、81.98%、23.4%;而轉化效率與重組效率分別為94.57%、76.85%。
接著由氧化蒸氣重組法之理論分析得知,反應溫度600oC時, O2/C4H9OH=1.5時,S/C莫耳比達3以上,能抑制積碳現象的發生。可重組範圍的實驗測試方面,在O2/C4H9OH=1.5與2.0時,S/C=3~7,其全部皆達反應溫度且重組區域為最廣;氫氣產率則為75.88%;燃料最佳的轉化效率則是70.41%;重組效率則為60.75%。







This study used the bio-butanol as the main fuel for reforming to produce hydrogen-rich synthesis gas. Two different reforming methods were adopted, including Partial Oxidation Reforming (POX) and Oxidation Steam Reforming (OSR). The theoretical equilibrium calculations were performed and compared with the experimantal results. Research is divided into two major parts, first one was to discuss the partial oxidation of butanol for hydrogen production and to identify the operation range of reforming; the second part is to investigate the synthesis of butanol oxidative steam reforming, and the parameters including hydrogen yield, conversion efficiency, reforming efficiency, and space velocity were investigated and analyzed.
The results show that, firstly, the coke formation is almost close to zero by partial oxidation method under O2/C4H9OH molar ratio of 1.5, and the reaction temperature is above 700oC. Under different parameters in experiments, the maximum reforming range fell at the input fuel heating value of 1.5kW; and the best hydrogen concentration and yield of hydrogen was 30.6%, 81.98%, respectively; and the conversion efficiency of fuel and reforming efficiency was 94.57% and 76.85%, respectively.
Then, from the theretical calculation on the oxidative steam reforming, the carbon deposition was depressed by the conditions of reaction temperature 600oC, O2/C4H9OH = 1.5 and S/C molar ratio over 3. With the parameters O2/C4H9OH = 1.5 and 2.0, S/C = 3 ~ 7, all experiments can reach the reaction temperature and have the widest reforming range. Under the operating conditions, hydrogen yield was 75.88%, the best conversion efficiency is 70.41% and reforming efficiency is 60.75%.


目 錄

頁數
中文摘要 -------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------- ii
誌謝 -------------------------------------------------------------------- iii
目錄 -------------------------------------------------------------------- iv
表目錄 -------------------------------------------------------------------- vii
圖目錄 -------------------------------------------------------------------- viii
符號說明 -------------------------------------------------------------------- xi
一、 緒論---------------------------------------------------------------- 1
1.1 前言---------------------------------------------------------------- 1
1.2 國內外研究現況------------------------------------------------------- 3
1.2.1 國外研究現況--------------------------------------------------------- 3
1.2.2 國內研究現況--------------------------------------------------------- 7
1.3 研究動機與目的------------------------------------------------------- 8
1.4 論文架構------------------------------------------------------------ 9
二、 理論基礎------------------------------------------------------------ 11
2.1 氫氣特性------------------------------------------------------------ 11
2.2 產氫原理------------------------------------------------------------ 12
2.3 化學理論平衡分析----------------------------------------------------- 16
2.4 觸媒基本原理--------------------------------------------------------- 16
2.4.1 觸媒催化的反應方式與種類---------------------------------------------- 17
三、 實驗設備與方法------------------------------------------------------- 19
3.1 實驗規劃流程--------------------------------------------------------- 19
3.2 重組器本體與周邊設備-------------------------------------------------- 20
3.2.1 重組器本體設計------------------------------------------------------- 21
3.2.2 重組器前端預混區----------------------------------------------------- 22
3.2.3 反應室觸媒結構------------------------------------------------------- 22
3.2.4 溫控箱裝置系統------------------------------------------------------- 23
3.2.5 溫度擷取系統--------------------------------------------------------- 25
3.3 進料系統------------------------------------------------------------ 26
3.3.1 液體---------------------------------------------------------------- 27
3.3.1.1 O-Ring(O型)--------------------------------------------------------- 29
3.3.2 氣體---------------------------------------------------------------- 30
3.4 冷卻系統------------------------------------------------------------- 31
3.5 採樣分析系統--------------------------------------------------------- 33
3.5.1 氣相色層分析儀基本原理------------------------------------------------ 33
3.5.2 氣相色層分析儀之操作-------------------------------------------------- 34
3.5.3 VICI16位閥---------------------------------------------------------- 35
3.5.4 檢量線校正----------------------------------------------------------- 36
3.5.5 廢氣分析儀----------------------------------------------------------- 37
3.6 實驗參數規劃--------------------------------------------------------- 37
3.6.1 參數規劃與選用------------------------------------------------------- 38
3.6.2 控制參數------------------------------------------------------------- 38
3.6.3 量測參數------------------------------------------------------------- 39
3.7 實驗反應物及產物相關理論分析計算--------------------------------------- 39
3.7.1 化學反應式----------------------------------------------------------- 39
3.7.2 反應物與產物的分析及計算----------------------------------------------- 39
四、 不同操作條件下對丁醇部分氧化法重組性能之影響----------------------------- 42
4.1 重組基礎條件之試驗---------------------------------------------------- 42
4.2 丁醇部分氧化重組理論反應----------------------------------------------- 42
4.3 重組器體溫度效應的影響------------------------------------------------- 43
4.4 不同O2/C4H9OH對於合成氣體(H2+CO)濃度與產率的影響------------------------ 47
4.4.1 不同O2/C4H9O與丁醇進料流率對於產率(Yield)的影響------------------------- 51
4.5 O2/C4H9OH對於轉化效率的影響------------------------------------------- 55
4.5.1 O2/C4H9OH對於重組效率的影響------------------------------------------- 58
五、 反應溫度以及操作條件對於丁醇氧化蒸氣重組性能之影響----------------------- 61
5.1 添加甲醇與乙醇對於丁醇水之混合影響------------------------------------- 61
5.2 重組基礎條件之試驗--------------------------------------------------- 62
5.3 丁醇氧化蒸氣重組法理論分析-------------------------------------------- 63
5.4 可重組範圍測試------------------------------------------------------- 65
5.5 O2/C4H9OH與S/C莫耳比對於產率的影響------------------------------------ 70
5.5.1 O2/C4H9OH與S/C莫耳比對於產出合成氣體濃度的影響------------------------ 70
5.6 重組溫度對於轉化效率與重組效率的影響---------------------------------- 73
5.6.1 空間速度的探討----------------------------------------------------- 77
六、 結論及未來展望----------------------------------------------------- 79
6.1 結論-------------------------------------------------------------- 79
6.2 未來發展與建議----------------------------------------------------- 80
參考文獻 ----------------------------------------------------------------- 82

[1]郭箴諴總編輯,暖化戰爭三部曲‧綠色新希望-再生能源,商鼎數位,台北,2012。
[2]經濟部能源局編著,2014年能源科技研究發展白皮書,經濟部能源局,台北,2014。
[3]Chao Jin, Mingfa Yao, Haifeng Liu, Chia-fon F.Lee, Jing Ji, “Progress in the production and application of n-butanol as a
biofuel”, Renewable and Sustainable Energy Reviews, Vol. 15, 2011, pp. 4080-4106.
[4]Shuvashish Behera, Richa Arora, N. Nandhagopal, Sachin Kumar, “Importance of chemical pretreatment for bioconversion of
lignocellulosic biomass”, Renewable and Sustainable Energy Reviews, Vol. 36, 2014, pp. 91-106.
[5]Mohammad J. Taherzadeh, Keikhosro Karimi, “Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production:
A Review”, International Journal of Molecular Sciences, 2008, pp. 1621-1651.
[6]周仕凱,許梅娟,“新能源-生物產丁醇”,科學發展,433 期,pp. 26-31,2009 年1 月。
[7]J. Wang , H. Chen , Y. Tian , M. Yao , Y. Li, “Thermodynamic analysis of hydrogen production for fuel cells from oxidative
steam reforming of methanol”, Fuel, Vol. 97, 2012, pp. 805–811.
[8]P. Liwei, N. Changjun, Z. Xuebin, Y. Zhongshan, Z. Chunxi, W. Shudong, “Study on a compact methanol reformer for a
miniature fuel cell”, International Journal of Hydrogen Energy, 2010, pp. 1-7.
[9]M. S. Wilson, “Methanol decomposition fuel processor for portable power applications”, International Journal of Hydrogen
Energy, Vol. 34, 2009, pp. 2955-2964.
[10]B. Lindstroma, J.A.J. Karlssonb, P. Ekdungea, L. De Verdierb, B. Haggendalb, J. Dawodyb, M. Nilssonc, L.J. Petterssonc,
“Diesel fuel reformer for automotive fuel cell applications”, International Journal of Hydrogen Energy, Vol. 34, 2009, pp.
3367-3381.
[11]J. W. Ha, A. Kundu, J. H. Jang, “Poly-dimethylsiloxane (PDMS)based micro-reactors for steam reforming of methanol”, Fuel
Processing Technology, Vol. 90, 2010, pp. 1725-1730.
[12]M.A. E. Soberanis, A.M. Fernandez, “A review on the technical adaptations for internal combustion engines to operate with
gas/hydrogen mixtures”, International Journal of Hydrogen Energy, Vol. 35, 2010, pp.12134-12140.
[13]J. J. Chong, A. Tsolakis, S.S. Gill, K. Theinnoi,S. E. Golunski, “Enhancing the NO2/NOx ratio in compression ignition
engines by hydrogen and reformate combustion for improved aftertreatment performance”, International Journal of Hydrogen
Energy, Vol. 35, 2010, pp. 8723-8732.
[14]T. Shudo, Y. Shima, T. Fujii, “Production of dimethyl ether and hydrogen by methanol reforming for an HCCI engine system
with waste heat recovery - Continuous control of fuel ignitability and utilization of exhaust gas heat”, International
Journal of Hydrogen Energy, Vol. 34, 2009, pp. 7638-7647.
[15]E. C. Vagia, A. A. Lemonidou, “Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected
components of aqueous bio-oil fraction”, International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 2489-2500.
[16]A. Carrero, J.A. Calles, A.J. Vizcaíno, “Effect of Mg and Ca addition on coke deposition over Cu–Ni/SiO2 catalysts for
ethanol steam reforming”, Chemical Engineering Journal, Vol. 163, 2010, pp. 395-402.
[17]J. Vicente, C. Montero, J. Ereña, M.J. Azkoiti, J. Bilbao, A.G. Gayubo, “Coke deactivation of Ni and Co catalysts in
ethanol steam reforming at mild temperatures in a fluidized bed reactor”, International Journal of Hydrogen Energy, Vol.
39, 2014, pp. 12586-12596.
[18]Y. K. Lee, K.S. Kim, J.G. Ahn, I.H. Son, W.C. Shin, “Hydrogen production from ethanol over Co/ZnO catalyst in a multi-
layered reformer”, International Journal of Hydrogen Energy, Vol.35, 2010, pp. 1147-1151.
[19]F. Gallucci, M. D. Falco, S. Tosti, L. Marrelli, A. Basile, “Ethanol steam reforming in a dense Pd-Ag membrane reactor: A
modelling work. Comparison with the traditional system” , International Journal of Hydrogen Energy, Vol. 33, 2008, pp.644-
651.
[20]S. Tosti, A. Basile, F. Borgognoni, V. Capaldo, S. Cordiner, S. Di Cave, F. Gallucci, C. Rizzello, A. Santucci, E.
Traversa, “Low temperature ethanol steam reforming in a Pd-Ag membrane reactor Part 1: Ru-based catalyst”, Journal of
Membrane Science, Vol. 308, 2008, pp. 250-257.
[21]S. D. Badmaev, P. V. Snytnikov, “Hydrogen production from dimethyl ether and bioethanol for fuel cell applications”,
International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 3026-3030.
[22]G. Manzolini, S. Tosti, “Hydrogen production from ethanol steam reforming: energy efficiency analysis of traditional and
membrane processes”, International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 5571-5582.
[23]C. Ji, X. Dai, B. Ju, S. Wang, B. Zhang, C. Liang, X. Liu, “Improving the performance of a spark-ignited gasoline engine
with the addition of syngas produced by onboard ethanol steaming reforming”, International Journal of Hydrogen Energy, Vol.
37, 2012, pp. 7860-7868.
[24]G.A. Nahar, S.S. Madhani, “Thermodynamics of hydrogen production by the steam reforming of butanol: Analysis of inorganic
gases and light hydrocarbons”, International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 98-109.
[25]L.H. Huang, J. Zhou, A.T. Hsu, R.R. Chen, “Catalytic partial oxidation of n-butanol for hydrogen production over LDH-
derived Ni-based catalysts”, International Journal of Hydrogen Energy, Vol. 3 8, 2013, pp. 14550-14558.
[26]W.J. Wang, Y.Y. Cao, “H2-rich gas production for SOFC via partial oxidation of butanol: Thermodynamic analysis”,
International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 13280-13289.
[27]W.J. Cai, P.R. de la Piscina, N. Homs, “Hydrogen production from the steam reforming of bio-butanol over novel supported
Co-based bimetallic catalysts”, Bioresource Technology., Vol. 107, 2012, pp. 482-486.
[28]W.J. Cai, P.R. de la Piscina, K. Gabrowska, N. Homs, “Hydrogen production from oxidative steam reforming of bio-butanol
over CoIr-based catalysts: Effect of the support”, Bioresource Technology, Vol. 128, 2013, pp. 467-471.
[29]W.J. Cai, P.R. de la Piscina, N. Homs, “Oxidative steam reforming of bio-butanol for hydrogen production: effects of noble
metals on bimetallic CoM/ZnO catalysts(M = Ru, Rh, Ir, Pd)”, Applied Catalysis B: Environmental, Vol. 145, 2014, pp. 56-
62.
[30]B. Roy, H. Sullivan, C.A. Leclerc, “Aqueous-phase reforming of n-BuOH over Ni/Al2O3 and Ni/CeO2 catalysts”, Journal of
Power Sources, Vol. 196, 2011, pp. 10652-10657.
[31]F. Bimbela, M. Oliva, J. Ruiz, L. Garcia , J. Arauzo, “Catalytic steam reforming of model compounds of biomass pyrolysis
liquids in fixed bed: Acetol and n-butanol”, Journal of Analytical and Applied Pyrolysis, Vol. 85, 2009, pp. 204-213.
[32]W.J. Cai, N. Homs, P.R. de la Piscina, “Renewable hydrogen production from oxidative steam reforming of bio-butanol over
CoIr/CeZrO2 catalysts: Relationship between catalytic behaviour and catalyst structure”, Applied Catalysis B:
Environmental, Vol. 150-151, 2014, pp. 47-56.
[33]J. Yang, X. Yang, J. Liu, Z. Han, Z. Zhong, “Dyno test investigations of gasoline engine fueled with butanol-gasoline
blends”, SAE Technical Paper, 2009, 2009-01-1891.
[34]J. Wasil, J. Johnson, R. Singh, “Alternative fuel butanol: Preliminary investigation on performance and emissions of a
marine two-stroke direct fuel injection engine”, SAE International Journal of Fuels and Lubricants, 2010, 2010-32-0054.
[35]T. Venugopal, A. Ramesh, “Effective utilisation of butanol along with gasoline in a spark ignition engine through a dual
injection system”, Applied Thermal Engineering, Vol. 59, 2013, pp. 550-558.
[36]T. Venugopal, A. Ramesh, “Experimental studies on the effect of injection timing in a SI engine using dual injection of n-
butanol and gasoline in the intake port”, Fuel, Vol. 115, 2014, pp. 295-305.
[37]B. Deng, J. Yang, D. Zhang, R. Feng, J. Fu, J. Liu, K. Li, X. Liu, “The challenges and strategies of butanol application in
conventional engines: The sensitivity study of ignition and valve timing”, Applied Energy, Vol. 108, 2013, pp. 248-260.
[38]B. Deng, J. Fu, D. Zhang, J. Yang, R. Feng, J. Liu, K. Li, X. Liu, “The heat release analysis of bio-butanol/gasoline
blends on a high speed SI (spark ignition) engine”, Energy ,Vol. 60, 2013, pp. 230-241.
[39]D. Fennell, J. Herreros, A. Tsolakis, “Improving gasoline direct injection (GDI) engine efficiency and emissions with
hydrogen from exhaust gas fuel reforming”, International Journal of Hydrogen Energy, Vol. 39, 2014, pp. 5153-5162.
[40]林建良、陳以松、盧昭暉,“柴油添加正丁醇對引擎燃燒特性及排放汙染的影響”,中華民國第十八屆車輛工程學術研討會論文集,屏東縣,國立屏東科技大
學,2013年12月13日。
[41]林百福、李世隆、黃南瑜,“乙丁醇燃料的混合效應對生質柴油引擎之特性”,中華民國第24屆燃燒與能源學術研討會論文集,台南市,國立成功大學,103年4
月19日。
[42]鍾佳宏、李孟杰、蔡弦錡、吳浴沂、劉達全,“替代燃料丁醇和汽油混合在機車引擎上的運轉特性”,中華民國第24屆燃燒與能源學術研討會論文集,台南市,
國立成功大學,103年4月19日。
[43]Anna Kujawska, Jan Kujawski, Marek Bryjak, Wojciech Kujawski, “ABE fermentation products recovery methods-A review”,
Renewable and Sustainable Energy Reviews, Vol. 48, 2015, pp. 648-661.
[44]A. Stwertka原著,化學元素導覽,劉廣定增定,田曉伍,任金霞共譯,世潮出版有限公司,台北,2004。
[45]柯賢文,未來的氫能經濟,科學發展,2006年3月,第399期。
[46]陳維新,能源概論,高立圖書有限公司,台北,2011年1月。
[47]Ryan O’Hayre, Suk-Won Cha, Whitney Colella, Fritz B.Prinz原著, 燃料電池基礎,王曉紅,黃宏編譯,全華,台北,2008。
[48]J. M. Smith, H. C. Van Ness原著,化工熱力學,張漢昌,張簡國平,賴劍秋共譯,高立新科技總經銷,台北,1991。
[49]Antti Roine, HSC chemistry for window, User’s Guide Version 5.0.
[50]胡興中編譯,觸媒原理與應用,高立圖書有限公司,台北,2005。
[51]吳榮宗,石化工業的推手,科學發展,2003年10月,第370期。
[52]李秋煌,改善環境的仙丹,科學發展,2003年10月,第370期。
[53]王飛龍,觸媒化學,滄海書局,台中,2012。
[54]G.C.Bond原著,非均勻系觸媒反應的理論與應用,李明哲編譯,復文書局,台南,1992。
[55]趙怡欽,許紘瑋,“觸媒燃燒”,燃燒季刊,第十一卷,第二期,2003年8月,pp. 12-30。
[56]金重勳編譯,熱處理,復文書局,台南,1999。
[57]W. W. Pulkrabek原著,內燃機,李冠宗,呂有豐編譯,高立圖書館,台北,1999。
[58]E. S. Richard, B. Claus, J. V. W. Gordan等著,熱力學,林正仁,呂立鑫,蔡秉宏編譯,全華,台北,2003。
[59]D. A. Skoog, F. James Holler, T. A. Nieman 等著,儀器分析,方嘉德編譯,滄海,台北,2000。
[60]E. Catherine, P. Gregoire and L. Francis, “Advances in hydrogen energy”, Kluwer Academic/Plenum Publishers, USA, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top