跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴士展
研究生(外文):SHIH-JAN TAI
論文名稱:量測氣氛對電化學式電阻記憶體之電性影響
論文名稱(外文):Investigation of Measurement Ambience on the Electrical Properties of an Electrochemical Resistive
指導教授:劉志益
指導教授(外文):Chih-Yi Liu
口試委員:賴俊宏劉冠廷王鴻猷
口試委員(外文):Chun-Hung LaiKuan-Ting LiuHung-Yu Wang
口試日期:2015-07-17
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:電阻式記憶體環境氣氛
外文關鍵詞:RRAMEnvironment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討電阻記憶體在不同量測環境與不同操作模式下對元件操作穩定性、切換特性與記憶時間之影響。針對不同量測環境所造成電性差異及內建電動勢現象進行分析,同時探討絲狀傳導路徑擴散限制與記憶時間之影響。本論文將分為四個部分,第一部份探討Cu/SiO2/Pt元件在不同濕度環境下水氣產生之銅氧化物與離子濃度對電阻切換特性、電阻切換機制與絲狀傳導路徑形成與斷裂之影響。第二部分探討不同量測環境對Cu/SiO2/Pt元件之影響,比較氮氣、氧氣與大氣造成元件電阻切換特性與電阻轉態機制改變之原因,釐清不同量測環境之電性差異。第三部分探討Cu/SiO2/Pt元件內建電動勢現象,並透過不同量測過程觀察內建電動勢變化情形,以離子濃度比較圖分析各量測環境下離子濃度分布與內建電動勢之關係。第四部分探討不同操作模式對記憶特性之影響,分析不同操作模式對絲狀傳導路徑之單多根分佈情形,再以絲狀傳導路徑擴散原理分析擴散現象,比較單多根絲狀傳導路徑擴散情形對記憶時間造成之影響。
This study investigated the resistive switching properties of an electrochemical RRAM (Cu/SiO2/Pt) in different environments and by different operation methods. The switching dispersion, operating parameter, electromotive force (Vemf), and cyclic voltammetry results were characterized in various situations. The humidity influenced the formation of CuxO layer at Cu/SiO2 interface and thus influenced the switching mechanism. The switching mechanism tended to be the electrochemical reaction in a high relative humidity and the thermochemical reaction in a low relative humidity. The moisture helps the Cu dissolution into Cu ions and water molecules are ionized into OH- ions, which lead to high ion concentration and high Vemf in high relative humidity. The Vemf was also influenced by the operating voltages. The Vemf also caused a non-zero crossing in current-voltage characteristics, which caused a non-ideal phenomenon in device simulation. The current and voltage operating modes formed different amount of Cu conducting filaments. The retention degradation of LRS was due to the Cu lateral diffusion-out from the Cu conducting filaments. Hence, the fewer conducting filaments with larger size had longer retention.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧與理論基礎 4
2-1 非揮發性記憶體簡介 4
2-1-1 電阻記憶體 5
2-1-2 鐵電記憶體 6
2-1-3 磁阻式記憶體 6
2-1-4 相變化記憶體 7
2-2 電阻式記憶體應用材料 8
2-3 電阻記憶體之電路架構 9
2-4 電阻記憶體操作特性 11
2-4-1 單極性切換 11
2-4-2 雙極性切換 12
2-5 電阻式記憶體切換機制 13
2-5-1 熱化學效應 13
2-5-2 價數變換效應 15
2-5-3 電化學效應 17
2-6 電流傳導機制 21
2-7 電阻記憶體相關文獻回顧 23
2-7-1 限制電流對電阻記憶體之影響 23
2-7-2 水氣對電阻記憶體之影響 24
2-7-3 不同量測環境對電阻記憶體特性之影響 26
2-7-4 奈米電池(Nano-Battery)對電阻記憶體之非理想效應 27
2-7-5 絲狀傳導路徑擴散情形對元件記憶時間之影響 31
第三章 實驗方法與步驟 33
3-1 元件製備方法 33
3-1-1 矽基板處理 34
3-1-2 白金基板製備 35
3-1-3 二氧化矽薄膜製備 36
3-1-4 銅上電極製備 37
3-2 電性量測分析 37
3-2-1 量測環境 37
3-2-2 電阻切換特性分析 38
3-2-3 循環伏安法 39
3-2-4 內建電動勢 41
第四章 結果與討論 44
4-1 30%至70%環境濕度之基本特性與轉態機制 44
4-1-1 元件製備流程 44
4-1-2 電性分析 45
4-1-3 位能障高度變化 49
4-1-4 Cion離子濃度之影響 51
4-1-5 操作特性比較 52
4-2 氮氣、氧氣與大氣量測環境之基本特性與轉態機制 58
4-2-1 電性分析流程 58
4-2-2 電性分析 59
4-2-3 位能障高度變化 63
4-2-4 Cion離子濃度之影響 64
4-2-5 操作特性比較 65
4-3 Cu/SiO2/Pt 元件之內建電動勢探討 72
4-3-1 內建電動勢量測流程 72
4-3-2 不同偏壓之內建電動勢變化 73
4-3-3 30%至70%濕度之內建電動勢變化 75
4-3-4 不同量測環境之內建電動勢變化 77
4-3-5 Non-Zero-Crossing現象與實際RRAM元件之關係 80
4-4 不同操作模式對Cu/SiO2/Pt元件之記憶時間影響 81
4-4-1 電性分析流程 81
4-4-2 單根與多根絲狀傳導路徑之側擴散情形 82
4-4-3 操作模式對絲狀傳導路徑之影響 84
4-4-4 單多根絲狀傳導路徑記憶時間比較圖 86
第五章 結論與未來展望 87
5-1 結論 87
5-2 未來展望 89
參考文獻 (Reference) 90

[1]C. Y. Liu and P. W. Sung, “Different Resistive Switching Characteristics of a Cu/SiO2/Pt Structure,” Jpn. J. Appl. Phys., Vol. 50, no. 9, p. 091101, Sep. 2011.
[2]C. Y. Liu, J. J. Huang, C. H. Lai, and C. H. Lin, “Influence of embedding Cu nano-particles into a Cu/SiO2/Pt structure on its resistive switching,” Nanoscale Res. Lett., Vol. 8, no. 1, p. 1, Apr. 2013.
[3]C. Y. Liu, Y. Y. Tsai, and C. H. Lai, “Effect of plasma treatment of resistive layer on a Cu/SiOx/Pt memory device,” J. Vac. Sci. Technol. A., Vol. 32, no. 2, p. 02B111, Jan. 2014.
[4]林釗漢, “以路徑形成統計探討二氧化矽電阻式記憶體之切換分散改善,” 國立高雄應用科技大學電子工程系碩士班論文, 2013.
[5]C. Y. Liu, Y. H. Huang, J. Y. Ho, and C. C. Huang, “Retention mechanism of Cu-doped SiO2-based resistive memory,” J. Phys. D: Appl. Phys., Vol. 44, no. 20, p. 205103, Apr. 2011.
[6]N. Raghavan, “Performance and reliability trade-offs for high-ț RRAM”, Microelectronics Reliability, Vol. 54, Issue 9, pp.2253-2257, Aug. 2014.
[7]H. Schroeder, V. V. Zhirnov, R. K. Cavin, and R. Waser, “Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells,” J. Appl. Phys., Vol. 107, no. 5, p. 054017, Mar. 2010.
[8]鐵電記憶體操作方式http://www.lapis-semi.com/kr/semicon/feram/
[9]X. Fong, Y. Kim, S. H. Choday, and K. Roy, “Failure mitigation techniques for 1T-1MTJ spin-transfer torque MRAM bit-cells,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 22, no. 2, pp. 384–395, Feb. 2014.
[10]K. Huang, Y. Ha, R. Zhao, A. Kumar, and Y. Lian, “A low active leakage and high reliability phase change memory (pcm) based non-volatile fpga storage element,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 61, no. 9, pp. 2605–2613, Sep. 2014.
[11]S. Amisi, E. Bousquet, K. Katcho, and P. Ghosez, “First-principles study of structural and vibrational properties of SrZrO3,” Phys. Rev. Vol. 85, Issue 6, p. 064112, Feb. 2012
[12]S. Kim, J. Zhou, and W. D. Lu, “Crossbar RRAM arrays: Selector device requirements during write operation,” IEEE Trans. Electron Devices, Vol. 61, no. 8, pp. 2820–2826, Aug. 2014.
[13]Y. T. Li, H. Xiaoyi, R. R. Li, E. Z. Chen, Q. C. Gong, C. L. Tao, “Oxide based two diodes–one resistor structure for bipolar RRAM crossbar array,” Microelectron. Eng. Vol. 130, pp. 35-39, Nov. 2014.
[14]H. K. Woo, S. P. Chang, Y. S. Jong, “Nanoscale resistive switching memory device composed of NiO nanodot and graphene nanoribbon nanogap electrodes,” CARBON Vol.79, pp.388–392, Aug. 2014
[15]D.L. Xu, Y. Xiong, M.H. Tang, B.W. Zeng, J.Q. Li, L. Liu, L.Q. Li, S.A. Yan, Z.H. Tang, “Bipolar resistive switching behaviors in Cr-doped ZnO films,” Microelectron. Eng. Vol.116, pp.22–25, Nov. 2014
[16]Y. Koo, S. Ambrogio, J. Woo, J. Song, D. Ielmini, and H. Hwang, “Accelerated Retention Test Method by Controlling Ion Migration Barrier of Resistive Random Access Memory,” IEEE Electron Device Lett, Vol. 36, no. 3, pp. 238–240, Mar. 2015.
[17]宋柏瑋, “銅摻雜二氧化矽薄膜於電阻式記憶體特性之研究,” 國立高雄應用科技大學電子工程系碩士班論文, 2010.
[18]M. Adnan, B. Mark, M. Luca, G. Leon, H. Stephen, F. Sarah, C. Richard, M. David, and J. K. Anthony, “Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory,” J. Appl. Phys, Vol.117, p.124505, Mar. 2015.
[19]I. Valov, “Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale,” ChemElectroChem, Vol. 1, pp. 26-36, 2014.
[20]S. M. Sze, and K. K. Ng, “Physics of Semiconductor Devices,” Third Edition, Wiley Interscience.
[21]C. Y. Liu, J. Y. Ho, J. J. Huang, and H. Y. Wang, “Transient Current of Resistive Switching of a NiOx Resistive Memory,” Jpn. J. Appl. Phys., Vol. 51, no. 4, p. 041101, Mar. 2011.
[22]T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, and M. Aono, “Effects of Moisture on the Switching Characteristics of Oxide-Based, GaplessType Atomic Switches,” Adv. Func. Mater., Vol. 22, pp. 70-77, Jan. 2012.
[23]T. H. Huang, P. K. Yang, D. H. Lien, C. F. Kang, M. L. Tsai, Y. L. Chueh, J. H. He, “Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification,” Sci. Rep., no. 4, p. 4402, Mar. 2014.
[24]I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. v. d. Hurk, F. Lentz, and R. Waser, “Nanobatteries in redox-based resistive switches require extension of memristor theory,” Nat. Commun., Vol. 4, p. 1771, Apr. 2013.
[25]X. Xu, H. Lv, H. Liu, T. Gong, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, and M. Liu, “Superior Retention of Low-Resistance State in Conductive Bridge Random Access Memory With Single Filament Formation,” IEEE Electron Device Lett, Vol. 36, no. 2, pp. 129-131, Feb 2015.
[26]S. Tappertzhofen, S. Menzel, I. Valov, and R. Waser, “Redox Processes in Silicon Dioxide Thin Films using Copper Microelectrodes,” Appl. Phys. Lett., Vol. 99, pp. 203103/1-3, Nov. 2011.
[27]S. Tappertzhofen, H. Mündelein, I. Valov, and R. Waser, “Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide,” Nanoscale, Vol. 4, pp. 3040-3043, Mar. 2012.
[28]S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono, “Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories,” ACSNano, Vol. 7, no. 7, p. 6396, Jun. 2013.
[29]J. B. Park, K. P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, and H. Hwang, “Multibit operation of TiOx-based ReRAM by Schottky barrier height engineering,” IEEE Electron Device Lett., Vol. 32, no. 4, pp. 476–478, Apr. 2011.
[30]A. Salehi, A. Nikfarjam, D. J. Kalantari, “Highly Sensitive Humidity Sensor Using Pd/Porous GaAs Schottky Contact,” IEEE Sensors Journal, Vol. 6, no. 6, pp. 1415-1421, Dec. 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top