跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 00:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施俊言
研究生(外文):Chun-Yen Shih
論文名稱:高應變率下光纖光柵之特性
論文名稱(外文):High Strain Rate Characteristics of FBGs
指導教授:蔡立仁
指導教授(外文):Liren Tsai
口試委員:蔡立仁江家慶劉乃上
口試委員(外文):Liren TsaiChia-Chin ChiangNai-Shang Liou
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:126
中文關鍵詞:光纖光柵感測器、分離式霍普金森拉桿、動態響應、鋁6061
外文關鍵詞:FBGs , SHTB, dynamic responses,Al-6061
相關次數:
  • 被引用被引用:2
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
光纖光柵感測器,因為他們的輕量化和良好的環境耐受性在各個工程領域。在本研究中,光纖光柵應變感測器被貼附於鋁6061之試片上,研究了光纖光柵波頻譜在高應變率。光纖光柵貼附於鋁6061試樣加工成狗骨形狀和應變規附著在其測量部分。光纖光柵傳感器的動態響應當時採用分離式霍普金森拉桿(SHTB)檢查。通過比較來自光纖光柵,應變規和霍普金森拉桿(SHTB)測量應變測量,光纖光柵應變傳感器的高應變率行為能夠在應變率加以探討在200S-1~450 S-1。
黏貼式之布拉格光纖光柵之試片於應變率200s-1-450s-1 動態衝擊下之霍普金森拉伸桿量測、布拉格光纖光柵應變感測器和應變片之結果觀察到,試片之應力與應變速率是成正比的。布拉格光纖光柵應變感測器與應變片於動態測試下呈現J 形(J-shape)應變歷程曲線,但是FBG 感測器之反應時間與敏靈度比應變片優良。
Fiber Bragg Grating sensors (FBGs) have been utilized in various engineering fields because of their lightweight and good environment tolerance. In this research, FBG strain sensors were embedded inside Al-6061 to study the FBG wave spectrums at high strain rate. The FBG embedded Al-6061 specimens were machined to dog-bone shape and a foil strain gauge was attached at its gauge section. The dynamic response of FBG sensors were then examined using split Hopkinson tension bar (SHTB). By comparing the strain measurements from FBGs, foil gauges, and SHTB measurements, the high strain rate behavior of FBG strain sensors was able to be explored at strain rates at 200s-1~450 s-1.
By examining the strain history measurements from the FBG sensor and strain gauges, the strain history curves exhibit the J-shape curve feature at the strain rates in a range from 200s-1 to 450s-1 and the stresses of the specimen that were direct proportional to the strain rate. However, the FBG strain sensor has higher sensitivity
and quicker response time than that of the strain gauge.
符號說明 II
第一章 緒論 1
1.1 研究背景 1
1.1.1鋁合金6061材料 5
1.1.2光纖 5
1.1.3 光纖光柵………………………………………………………………………….…9
1.1.4 機械性質測試………………………………………………………………………….….12
1.2 研究動機 18
第二章 文獻回顧 20
2.1 鋁6061之熱處理 20
2.2 FBG感測器相關文獻………………………………………………………………………………21
2.3 布拉格光纖光柵感測器…………………………………………………………………………….26
2.3.1 光纖光柵基礎理論 ……………………………………………………………………………26
2.3.2布拉格光纖光柵基礎理論……………………………………………………………………28
2.3.3布拉格波長受物理性作用之影響………………………………………………………………29
2.4 霍普金森桿 31
2.4.1 霍普金森桿的歷史發展 31
2.4.2 基礎理論 35
2.4.2.1 傳統霍普金森桿 35
2.4.2.2 霍普金森桿理論公式推導 36
2.5霍普金森桿於試驗上的困難與修正 38
第三章研究方法與材料…………………………………………………………………41
3.1 SHTB實驗設置 42
3.2布拉格光纖光柵應變測量系統原理與設置 46
3.2.1能量解調系統(INTERROGATION SYSTEM) 48
3.2.2靜態校正系統(STATIC CORRECTION SYSTEM) 50
3.3實驗試片與FBG 感測器準備………………………………………………………………………52
3.3.1 布拉格光纖光柵感測器(Fiber Bragg Grating Strain sensors)…………………………………52
3.3.2 鋁合金6061材料……………………………………………………………………………….…54
第四章 結果與討論 56
4.1動態拉伸 58
4.2 SHTB動態拉伸實驗數據圖………………………………………………………………………89
4.2.1動態拉伸數據圖…………………………………………………………………………………89 4.2.2動態拉伸數據圖…………………………………………………………………………………93
4.3 能量解調…………………………………………………………………………………………….95
4.4黏貼於試片表面之FBG感測器…………………………………………………………………….97
4.4.1黏貼前後之波長…………………………………………………………………………………100
第五章 總結 105
參考文獻 106
作者簡歷 110

[1]. Fiber Bragg Grating, Raman Kashyap, BT Laboratories, Martlesham Health IpswIch, United Kingdom.
[2]. 6061鋁合金經等徑轉角擠形之機械性質,碩士論文,國立中山大學材料科學工程學系,高雄,台灣。
[3]. 劉靜(2010)以光纖光柵感測器監測複合材料成形,碩士論文,國立高雄應用科技大學機械工程學系,高雄,台灣。
[4]. 胡裕民、呂正中、周維楊、林克默、林奎輝、姜庭隆、黃敏郎、馮世維 (2005),物理,高立圖書有限公司,台北市。
[5]. T. Erdogan, 1997. “Fiber Grating Spectra” Journal of Lightwave Technology, Volume 15, Issue 8, pp.1277–1294.
[6]. 鍾隆維(1999)光纖光柵之理論計算與實際製作之研究,碩士論文,國立中正理工學院機械工程學系,桃園,台灣。
[7]. B. A Gama, S. L Lopatnikov, J. W G. Jr, 2004. “Hopkinson bar experimental technique: A critical review” Applied Mechanics Reviews, Volume 57, Issue 4, pp.223–250.
[8]. S. Nemat-Nasser, 2000. “Introduction to high strain rate testing” In: “ASM Handbook, Mechanical Testing and Evaluation” ASM International, Volume 8, pp.427–461.
[9]. 莊雲晴(2011)動態負荷下膝關節之關節軟骨、半月板組織以及PAA 水膠修補材料之動態響應,碩士論文,國立高雄應用科技大學機械工程學系,高雄, 台灣
[10]. J. Harding, L. M. Welsh, 1983. “A tensile testing technique for fibre-reinforced composites at impact rates of strain,” Journal of Materials Science, Volume 18, Issue 6, pp. 1810–1826.
[11]. B. Hopkinson, 1914. “A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets” Philosophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or Physical Character, Volume 213, Issue 612, pp. 437–456.
[12]. J. Harding, L. M. Welsh, 1983. “A tensile testing technique for fibre-reinforced composites at impact rates of strain,” Journal of Materials Science, Volume 18, Issue 6, pp. 1810–1826.
[13]. J. M. Lifshitz, H. Leber, 1998. “Respond of fiber-reinforced polymers to high strain-rate loading ing interlaminar tension and combined tension/shear,” Composites Science and Technology, Volume 58, Issue 6, pp. 987-996.
[14]. K. O. Lee, K. S. Chiang, Z. Chen, et al., “Temperature-insensitive fiber Bragg grating based vibration”, Society of Photo-Optical Instrumentation Engineers, 40(11), pp2582-2585 (2001).
[15]. X. C. Li, F. Prinz and J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor”, Smart Materials and Structures, Vol. 10, pp575-579 (2001).
[16]. A. Jadhav, E. Woldesenbet, S.S. Pang, 2003. “High strain rate properties of balanced angle-ply graphite/epoxy composites,” Composites: Part B, Volume 34,Issue 4, pp. 339-346.
[17]. 江家慶,”以內埋式光纖光柵感測器監測複材疲勞損傷”,台灣大學機械工程研究所博士論文 (2005) 。
[18]. N. Taniguchi, T. Nishiwaki, N. Hirayama, H. Nishida, H. Kawada, 2009. “Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions,” Composites Science and Technology, Volume 69, Issue 2, pp.207–213.
[19]. M. A. Davis, D. G. Bellemore, A. D. Kersey, 1997. “Distributed Fiber Bragg Grating Strain Sensing in Reinforced Concrete Structural Components” Cement and Concrete Composites, Volume 19, Issue 1, Pages 45–57.
[20]. K. T. Lau, L. M. Zhou, J. S. Wu, 1999. “Investigation on strengthening and strain sensing techniques for concrete structures using FRP composites and FBG sensors” Materials and structures, Volume 34, Number 1, Pages 42-50.
[21]. K.T. Lau, L.Yuan, L.M.Zhou, J.S. Wu, C.H.Woo, 2000.” Strain monitoring in FRP laminates and concrete beams using FBG sensors” Composite Structures, Volume 51, Issue 1, Pages 9–20.
[22]. K.S.C. Kuanga, R. Kenny, M.P. Whelan, W.J. Cantwell, P.R. Chalker, 2000. “Embedded fibre Bragg grating sensors in advanced composite materials” Composites Science and Technology, Volume 61, Issue 10, Pages 1379–1387.
[23]. H. Kolsky, 1949. “An Investigation of the Mechanical Properties of Materials at very High Rates of Loading” Proceedings of the Physical Society, Section B, Volume 62,Issue 11, pp. 676–700.
[24]. J.W. Landon, H. Quinney, 1923. "Experiments with the Hopkinson pressure bar" Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, Volume 103, Issue 723, Pages 622–643.
[25] P. Verleysen, J. Degrieck, T. Verstraete, J. Van Slycken, 2008. “Influence of
Specimen Geometry on Split Hopkinson Tensile Bar Tests on Sheet Materials,”
EXPERIMENTAL MECHANICS, Volume 48, Number 5, Pages 587-598.
[26] H. Tsuda, J. R. Lee, 2006. “Strain and damage monitoring of CFRP in impact
loading using a fiber Bragg grating sensor system,” Composites Science and
Technology 67, Volume 67, Issues 7–8, Pages 1353–1361.
[27] H. Tsuda, 2006. “Ultrasound and damage detection in CFRP using fiber Bragg
grating sensors,” Composites Science and Technology 66, Volume 66, Issue 5,
Pages 676–683.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top