跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/25 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鈺容
研究生(外文):Yu-Rong Huang
論文名稱:微型軸向式磁阻電動機研製
論文名稱(外文):Development of a Micro Axial-type Reluctance Motor
指導教授:龐大成
指導教授(外文):Da-Chen Pang
口試委員:劉永田蘇琨祥
口試委員(外文):Yung-Tien LiuKun-Shian Su
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:124
中文關鍵詞:微型軸向磁阻電動機厚膜光阻微影製程微小旋轉機構
外文關鍵詞:Micro Axial Switched Reluctance MotorThick Photoresist Lithography ProcessMicro Carousel Mechanism
相關次數:
  • 被引用被引用:4
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
本論文利用拓撲優化法改善微型軸向磁阻電動機設計,達到降低轉矩漣波之目的,讓高速運轉下更加平穩。本研究另外設計一微小旋轉木馬機構,利用微機電製程加工製作,最後與微型電動機整合成為一微小旋轉系統。

本微型軸向磁阻電動機之定子結構採用圓形磁極,與傳統扇形結構不同,本研究採用拓撲優化法進行電動機轉子最佳化設計,藉由JMAG電磁分析軟體進行電磁分析,完成一定子6極、轉子4極之磁阻電動機,其外徑為1.5mm,長度為2.25mm。轉子設計由以往的扇形變為飛鏢形,能有效降低轉矩漣波。

本飛鏢型電動機於驅動電流0.7A時,理論分析輸出平均轉矩為0.0385μNm,轉矩漣波為27.5%,與扇型電動機比較,有效降低轉矩漣波48%,但平均轉矩亦下降7%。在驅動電流0.7A時,實際量測飛鏢型電動機最大啟動轉矩為0.0225μNm,最高轉速達8,250RPM,扇型電動機最大啟動轉矩為0.0243μNm,最高轉速達7,500RPM,符合分析預測趨勢。

本研究利用厚膜光阻微影技術製作微小木馬元件,組裝成一直徑3mm旋轉木馬機構,最後將轉子嵌入旋轉木馬中,整合成為一微小旋轉系統,過程中克服氣隙不均造成旋轉不順之問題,目前此旋轉系統達到最高轉速600 RPM。

A micro axial switched reluctance motor (μASRM) is designed using topology optimization method to reduce torque ripple for better performance. The μASRM integrated with micro carousel mechanism becomes a micro rotating system. Both μASRM and micro carousel mechanism are made by MEMS technology.

The μASRM designed with 6-pole stator and 4-pole rotor has an outer diameter of 1.5mm and length of 2.25mm. The motor performance is analyzed using JMAG software. The topology optimization method is applied to optimize rotor design. The rotor becomes shuriken shape different from the original fan shape. The torque ripple is effectively reduced by 48%, however, the average torque is decreased by 7%.

Both shuriken-type and fan-type μASRMs are manufactured and tested. The shuriken-type motor has a starting torque of 0.0225μNm and achieves maximum speed of 8,250RPM with input current 0.7A. The original fan-type motor has a starting torque of 0.0243μNm and maximum speed of 7,500RPM under the same experimental condition.

The small carousel parts are fabricated using thick photoresist lithography process. The carousel mechanism is assembled together with rotor embedded inside. The carousel mechanism integrated shuriken-type μASRM has an outer diameter of 3mm and length of 2.25mm. This micro rotation system achieves a maximum speed of 600 RPM with input current 0.7A.

摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 國內外相關研究 2
1.2.1國外厚膜光阻相關研究 2
1.2.2國外磁阻電動機相關研究 5
1.2.3國內磁阻電動機相關研究 20
1.3 研究方法 24
1.4 論文架構 26
第二章 微型軸向磁阻電動機設計與分析 27
2.1 微型磁阻電動機之種類 27
2.2 微型磁阻電動機動作原理及轉矩產生原理 29
2.2.1微型磁阻電動機動作原理 29
2.2.2微型磁阻電動機轉矩產生原理 30
2.2.3微型磁阻電動機相關公式 31
2.3 微型軸向磁阻電動機分析及設計 33
2.3.1微型磁阻電動機JMAG電磁分析軟體介紹 33
2.3.2微型磁阻電動機拓撲優化分析設計 40
2.3.3微型磁阻電動機分析比較 50
2.3.4微型磁阻電動機最終設計 54
第三章 微型軸向磁阻電動機及旋轉機構製作 60
3.1 電動機製程技術 61
3.1.1厚膜光阻微影製程 61
3.1.2微電鑄製程 62
3.1.3結構釋放技術 63
3.2 電動機旋轉系統零件製作 64
3.2.1電動機定位片製作 64
3.2.2電動機轉子製作 67
3.2.3旋轉機構製作 71
3.3 製程問題與討論 74
3.3.1厚膜光阻顯影不足及應力集中破壞 74
3.3.2厚膜光阻曝光過度 75
3.3.3電鑄加工問題 76
第四章 微機電旋轉系統組裝、測試 77
4.1 磁阻電動機零件製作 77
4.2 磁阻電動機組裝 78
4.3 磁阻電動機驅動電路裝置 82
4.4 磁阻電動機特性量測 84
4.4.1轉矩量測 84
4.4.2最高轉速量測 89
4.4.3反電動勢量測 92
第五章 結論 100
5.1 完成事項 100
5.2 未來展望 102
參考文獻 103

[1]H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS”, Journal of Micromechanics and Microengineering, Vol. 7, No. 3, 1997.
[2]A. L. Bogdanov, and S. S. Peredkov, “Use of SU-8 photoresist for very high aspect ratio x-ray lithography”, Microelectronic Engineering, Vol.53, Issue 1-4, pp.493-493, 2000.
[3]E. H. Conradie, and D. F. Moore, “SU-8 thick photoresist processing as a functional material for MEMS applications”, Journal of Micromechanics and Microengineering, Vol. 12, No. 4, pp.368-374, 2002.
[4]C. H. Lin, G. B. Lee, B. W. Chang, and G. L. Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist”, Journal of Micromechanics and Microengineering, Vol. 12, No. 5, 2002.
[5]C. Luo, A. Govindaraju, J. Garra, T. Schneider, R. White, J. Currie, and M. Paranjape, “Releasing SU-8 Structures Using Polystyrene as a Sacrificial Material”, Sensors and Actuators A: Physical, Vol.114, Issue 1, pp.123-128, 2004.
[6]L. S. Fan, Y. C. Tai, and R.S. Muller, “IC-processed electrostatic micro-motors”, Proc. of IEEE International Electron Devices Meeting, pp. 666-669, 1988.
[7]H. Guckel, K. J. Skrobis, T. R. Christenson, J. Klein, S. Han, B. Choi, E. G. Lovell, and T. W. Chapman, “Fabrication and testing of the planar magnetic micro motor”, Journal of Micromechanics and Microengineering, Vol. 1, Issue 3, pp. 135-138, 1991.
[8]H. Guckel, T. R. Christenson, K. J. Skrobis, T. S. Jung, J. Klein, K. V. Hartojo, and I. Widjaja, “A first functional current excited planar rotational magnetic micro motor”, Proc. IEEE Micro Electro Mechanical Systems, pp. 7-11, 1993.
[9]C. H. Hoa, K. P. China, C. R. Yangb, H. M. Wuc, and S. L. Chenc, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micro motors with embedded roots”, Sensors and Actuators A: Physical, Vol. 102, Issue 1-2, pp. 130-138, 2002.
[10]E. S. Afjei, and H. A. Toliyat, “A Novel Multilayer Switched Reluctance Motor”, IEEE Transactions on Energy Conversion, Vol. 17, Issue 2, pp. 217-221, 2002.
[11]M. C. Tsai, C. C. Huang, and Z. Y. Huang, “A new two-phase homopolar switched reluctance motor for electric vehicle applications”, Journal of Magnetism and Magnetic Materials 267 (2003), Vol. 267, Issue 2, pp. 171-181, 2003.
[12]S. G. Oh, and R. Krishnan, “Two Phase SRM With Flux Reversal Free Stator: Concept, Analysis, Design and Experimental Verification”, IEEE Transactions on Industry Applications, Vol. 43, Issue 5, pp.1247-1257, 2007.
[13]N. S. Lobo, S. G. Oh, and R. Krishnan, “Comparison of Two Switched Reluctance Motors with No Flux-Reversal in the Stator”, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, pp. 1459-1464, 2006.
[14]E. Afjei, K. Navi, and S. Ataei, “A New Two Phase Configuration for Switched Reluctance Motor with High Starting Torque”, 7th International Conference on Power Electronics and Drive Systems, PEDS '07, pp.517-520, 2007.
[15]E. Afjei, B. Mazloomnezhad, and A. Seyadatan, “A novel two phase configuration for Switched reluctance motor with high starting torque”, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1049-1052, 2008.
[16]N. S. Lobo, E. Swint, and R. Krishnan, “M-Phase N-Segment Flux-Reversal-Free Stator Switched Reluctance Machines”, Industry Applications Society Annual Meeting IEEE, pp.1-8, 2008.
[17]D. H. Lee, H. Wang, and W. A. Jin, “Modeling and control of novel bearingless switched reluctance motor”, Proc. IEEE Energy Conversion Congress and Exposition, pp. 276-281, 2009.
[18]H. Wang, D. H. Lee, and J. W. Ahn, “Novel two-phase switched reluctance motor with hybrid rotor structure”, Proc. IEEE Energy Conversion Congress and Exposition, pp. 270-275, 2009.
[19]H. Arihara, and K. Akatsu, “A basic property of axial type switched reluctance motor”, 2010 International Conference on Electrical Machines and Systems, pp. 1687-1690, 2010.
[20]A. Labak, and N. C. Kar, “Development and analysis of a five-phase pancake shaped switched reluctance motor”, 2010 XIX International Conference on Electrical Machines, pp. 1-6, 2010.
[21]A.Siadatan, M.Asgar, V.Najmi and E.Afjei, “A Novel Method for Torque Ripple Reduction in 6/4 Two Rotor Stack Switched Reluctance Motor”, Proceedings of the 2011-14th European Conference on Power Electronics and Applications, pp.1-10, 2011.
[22]M. Tanujaya, D. H. Lee, and J. W. Ahn, “Characteristic analysis of a novel 6/5 c-core type three-phase switched reluctance motor”, 2011 International Conference on Electrical Machines and Systems, pp. 1-6, 2011.
[23]M. Tanujaya, D. H. Lee, Y. J. An, and J. W. Ahn, “Design and analysis of a novel 4/5 two-phase switched reluctance motor”, 2011 International Conference on Electrical Machines and Systems, pp. 1-6, Aug. 20-23, 2011.
[24]A. Siadatan, V. Najmi, and E. Afjei, “Modeling, Simulation and Analysis of A Novel Two Layer 8/6 Hybrid Switched Reluctance Motor/Field-Assisted Generator”, 20th Iranian Conference on Electrical Engineering(ICEE), pp.495-500, 2012.
[25]H. Torkaman, E. Afjei, and M. S. Toulabi, “New double-layer-per-phase isolated switched reluctance motor: concept, numerical analysis, and experimental confirmation”, IEEE Transactions on Industry Applications, Vol. 59, Issue 2, pp. 830-838, 2012.
[26]P. Andrada, B. Blanqué, E. Martínez, and M. Torrent, “New Hybrid Reluctance Motor Drive”, 2012 XXth International Conference on Electrical Machines (ICEM), pp.2689-2694, 2012.
[27]林信嘉,“結合渦流感測器之微型磁浮馬達設計、分析、製作及測試”, 華梵大學機電工程研究所碩士論文,2002年。
[28]陳嘉俊,“結合渦流感測器之微型軸向馬達分析、製作與測試”,高雄應用科技大學機械與精密工程研究所碩士論文,2005年。
[29]楊竣凱,“結合渦流感測器之微型軸向磁阻馬達設計、分析、製作與測試”,高雄應用科技大學機械與精密工程研究所碩士論文,2008年。
[30]楊昇霖,“整合馬達與平面四連桿組之微機電傳動系統研製”,高雄應用科技大學機械與精密工程研究所碩士論文,2009年。
[31]楊善淵,“微型軸向磁阻馬達設計、製作與測試”,高雄應用科技大學機械與精密工程研究所碩士論文,2010年。
[32]杜易達,“整合微型磁阻馬達與平面四連桿組之新型微機電傳動系統研製”,高雄應用科技大學機械與精密工程研究所碩士論文,2013年。
[33]P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda and N. N. Fulton, “Variable-Speed Switched Reluctance Motors”, IEEE Transactions on Industrial Electronics, Vol. 127, No. 4, pp. 253-256, 1980.
[34]R.Krishnan, “Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications”, Baker & Taylor Books, North Carolina, 1993.
[35]http://www.isu.edu.tw/upload/81201/43/news/postfile_12679.pdf
[36]MicroChem Corp, “SU-8 50-100 Datasheets”, http://www.microchem.com/pdf/SU8_50-100.pdf, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top