(3.239.33.139) 您好!臺灣時間:2021/03/05 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:駱詩凱
研究生(外文):Shi-Kai Luo
論文名稱:不同液壓條件對T型管厚度影響之模擬
論文名稱(外文):Simulation on the Effects of Different Hydro-Pressure Condition on Thickness of T-shape Tubes
指導教授:黃德福黃德福引用關係
指導教授(外文):Te-Fu Hwang
口試委員:邱錫榮李新中
口試委員(外文):Xi-Rong QiuXin-Zhong Li
口試日期:2015-01-23
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:SUS304管件液壓成形鼓脹負載條件
外文關鍵詞:SUS304 stainless steelTube hydroformingBulgingLoading path
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
本文使用有限元素模擬軟體LS-DYNA 3D模擬SUS304不鏽鋼管在具背向推桿作用之T形管液壓鼓脹成形。建構T形管之液壓鼓脹成形模型,進行液壓鼓脹成形之模擬,在不同的模具與管材間之摩擦係數下,探討整體過程中的鼓脹、校正、成形等階段在不同負載條件,如鼓脹與校正階段之液體壓力及軸向推桿行程關係,以及在成形階段垂直與軸向推桿之間不同行程比。當負載關係最佳化後,便可保持T形管支管頂端之厚度,不會因過度薄化而產生破裂,以及不易在肩角處產生皺摺,使其得到較佳的高度與外觀。
In this paper, finite element simulation software LS-DYNA 3D simulation SUS304 stainless steel pipe in the role of a back-putt hydraulic bulge forming a T-shaped pipe. Construction of T-shaped tube of hydraulic bulge forming model to simulate the hy-draulic bulge forming in the coefficient of friction between the different molds and pipe to assess the overall process of bulging, correction, forming phases at different load conditions, such as bloating and correction fluid pressure and the axial direction of the push rod stroke phase relationship, as well as between the push rod to the axial direction perpendicular to the forming stage different stroke ratio. When the load is related to the optimization, the thickness of the T-shaped pipe can keep the top of the manifold, not due to excessive thinning and cracking, and easy to produce wrinkles at the corner of the shoulder to get the best height and appearance.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 管件液壓成形簡介 11
1-3 文獻回顧 14
1-4 研究動機與目的 16
1-5 論文架構 16
第二章 研究相關理論 19
2-1 管件液壓成形基礎理論 19
2-2 管件液壓成形材料之影響 22
2-3 管件液壓成形挫曲因素與避免方法 24
2-4 管件液壓成形摩擦 25
2-5 管件液壓成形負載條件 27
第三章 有限元素模擬分析 31
3-1 有限元素法模擬簡介 31
3-2 模擬分析基本架構 33
3-3 模型網格尺寸差異 36
3-4 邊界條件 38
第四章 結果與討論 45
4-1 SUS304不鏽鋼管之負載條件CASE1與CASE2模擬結果比較 45
4-1-1 降伏階段 45
4-1-2 鼓脹階段 54
4-1-3 校正階段 63
4-1-4 成形階段 74
4-2 T型鋁管AA6063-T5液壓成形 91
4-2-1 不同的負載條件CASE 1與CASE 2之模擬結果與實驗比較 91
4-2-2 有無使用垂直推桿之模擬結果與實驗比較 95
第五章 結論與建議 99
5-1 研究結果總結 99
5-2 未來研究方向與建議 100
參考文獻 101

[1]鄭炳國,民94,“管件液壓成形技術最新應用現況與發展趨勢”,工程,78卷,6期,頁107-121,12月
[2]宛世劍,2009,現代液壓成形技術,1版,國防工業出版社,中國
[3]鄭炳國,民95,“管件液壓成形”,科學發展月刊,400期,頁12-17,4月
[4]F. Dohmann, Ch. Hartl, 1997, “Tube hydroforming―research and practical appli-cation”,Journal of Materials Processing Technology, Vol.71, pp.174-186.
[5]M. Ahmetoglu, T. Altan, 2000, “Tube hydroforming: state-of-the-art and future trends”,Journal of Materials Processing Technology, Vol.98, pp.25-33.
[6]M. Ahmed, M.S.J. Hashmi, 1997, “Estimation of machine parameters for hydraulic bulge forming of tubular components”,Journal of Materials Processing Technology, Vol.64, pp.9-23.
[7]何濬炎,2013,SUS304不鏽鋼分歧管液壓成形鼓脹之模擬分析,國立高雄應用科技大學,碩士論文。
[8]林瑞彰,2003,管材之成形極限研究,國立中山大學,碩士論文。
[9]黃建成,2001,管材液壓鼓脹成形之力學解析,國立中山大學,碩士論文。
[10]蕭棓元,2002,管液壓成形負載條件之最佳化研究,國立中興大學,碩士論文。
[11]M. Imanine, G. Subhash, A. Loukus, 2005, “Loading path optimization of tube hydroforming process”, International Journal of Machine Tools & Manufacture, Vol.45, pp.1504-1514.
[12]Nader Asnafi, Anders Skogsgårdh, 2000, “Theoretical and experimental analysis of stroke-controlled tube hydroforming”,Materials Science and Engineering, Vol.279, pp.95-110.
[13]Y.M. Hwang, T.C. Lin, W.C. Chang, 2007, “Experiments on T-shape hydroform-ing with counter punch”, Journal of Materials Processing Technology, Vol.192-193, pp.243-248.
[14]MuammerKoç, 2003, “Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process”, Journal of Materials Processing Technology, Vol.133, pp.276-281.
[15]Li Shu-hui, Yang Bing, Zhang Wei-gang, Lin Zhong-qin, 2008, “Loading path prediction for tube hydroforming process using a fuzzy control strategy”, Materials and Design, Vol.29, pp.1110-1116.
[16]M. Ahmed, M.S.J. Hashmi, 2001, “Three-dimensional finite-element simulation of bulge forming”,Journal of Materials Processing Technology, Vol.119, pp.387-392.
[17]M. Ahmetoglu, K. Sutter, X.J. Li, T. Altan, 2000, “Tube hydroforming: current research, applications and need for training”,Journal of Materials Processing Technology, Vol.98, pp.224-231.
[18]B. Carleer, G van der Kevie, L. de Winter, B. van Veldhuizen, 2000, “Analysis of the effect of material properties on the hydroforming process of tubes”, Journal of Materials Processing Technology, Vol.104, pp.158-166.
[19]MuammerKoç, TaylanAltan, 2001, “An overall review of the tube hydroforming (THF) technology”, Journal of Materials Processing Technology, Vol.108, pp.384-393.
[20]Nader Asnafi, 1999, “Analytical modeling of tube hydroforming”, Thin-Walled Structures, Vol.34, pp.295-330.
[21]F. Dohmann, Ch. Hartl, 1996, “Hydroforming – a method to manufacture light-weight parts”, Journal of Materials Processing Technology, Vol.60, pp.669-676.
[22]W. Rimkus, H. Bauer, H.J.A. Mihsein, 2000, “Design of load-curves for hydro-forming applications”, Journal of Materials Processing Technology, Vol.108, pp.97-105.
[23]D. Schmoeckel, C. Hielscher, R. Huber, M. prier, 1997, “Internal High Pressure Forming at PtU”, PtU der TechnischenHochschule Darmstadt.
[24]A. Aydemir, J.H.P. de Vree, W.A.M. Brekelmans, M.G.D. Geers, W.H. Sillekens, R.J. Werkhoven, 2005, “An adaptive simulation approach designed for tube hy-droforming processes”, Journal of Materials Processing Technology, Vol.159, pp.303-310.
[25]B.J. Donald, M.S.J. Hashmi, 2000, “Finite element simulation of bulge forming of a cross-joint from a tubular blank”, Journal of Materials Processing Technology, Vol.103, pp.333-342.
[26]C. Nikhare, M. Weiss, P.D Hodgson, 2010, “Die closing force in low pressure tube hydroforming”, Journal of Materials Processing Technology, Vol.210, pp.2238-2244.
[27]E. Chu, Yu Xu, 2004, “Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes”, International Journal of Mechanical Sciences, Vol.46, pp.263-283.
[28]E. Chu, Yu Xu, 2008, “Influences of generalized loading parameters on FLD pre-dictions for aluminum tube hydroforming”, Journal of Materials Processing Tech-nology, Vol.196, pp.1-9.
[29]Fuh- Kuo Chen, Shao- Jun Wang, Ray- Hau Lin, 2007, “A study of forming pres-sure in the tube- hydroforming process”, Journal of Materials Processing Technol-ogy, Vol.192-193, pp.404-409.
[30]G.T. Kridli, L. Bao, P.K. Mallick, Y. Tian, 2003,“Investigation of thickness varia-tion and corner filling in tube hydroformig”, Journal of Materials Processing Technology, Vol.133, pp.287-296.
[31]HatemOrban, S. Jack Hu, 2007, “Analytical modeling of wall thinning during cor-ner filling in structural tube hydroforming”, Journal of Materials Processing Tech-nology, Vol.194, pp.7-14.
[32]HosseinKashaniZadeh, Mahmoud MosaviMashhadi, 2006, “Finite element simula-tion and experiment in tube hydroforming of unequal T shapes”, Journal of Mate-rials Processing Technology, Vol.177, pp.684-687.
[33]J. Crapps, E.B. Marin, M.F. Horstemeyer, R. Yassar, P.T. Wang, 2010, “Internal state variable plasticity-damage modeling of the copper tee-shaped tube hydro-forming process”, Journal of Materials Processing Technology, Vol.210, pp.1726-1737.
[34]K. Mori, A.U. Patwari, S. Maki, 2004, “Improvement of Formability by Oscillation of Internal Pressure in Pulsating Hydroforming of Tube”, CIRP An-nals-Manufacturing Technology, Vol.53, pp.215-218.
[35]Kuang-JauFann, Pou-Yuan Hsiao, 2003, “Optimization of loading conditions for tube hydroforming”, Journal of Materials Processing Technology, Vol.140, pp.520-524.
[36]L. Fllice, L. Fratini, F. Micari, 2001, “A simple experiment to characterize material formability in tube hydroforming”, CIRP Annals-Manufacturing Technology, Vol.50, pp.181-184.
[37]L. Gao, S. Motsch, M. Strano, 2000, “Classification and analysis of tube hydro-forming processes with respect to adaptive FEM simulations”, Journal of Materials Processing Technology, Vol.129, pp.261-267.
[38]L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, K.B. Niel-sen, 2004, “Hydroforming highlights: sheet hydroforming and tube hydroforming”, Journal of Materials Processing Technology, Vol.151, pp.165-77.
[39]MatteoStrano, SuwatJirathearanat, TaylanAltan, 2001, “Adaptive FEM Simulation for Tube Hydroforming: aGeometry- Based Approach for Wrinkle Detection”, CIRP Annals-Manufacturing Technology, Vol.50, pp.185-190.
[40]Mikael Jansson, Larsgunnar Nilsson, KjellSimonsson, 2007, “On process parameter estimation for the tube hydroforming process”, Journal of Materials Processing Technology, Vol.190, pp.1-11.
[41]MuammerKoç, TaylanAltan, 2002, “Prediction of forming limits and parameters in the tube hydroforming process”, International Journal of Machine Tools & Manu-facture, Vol.42, pp.123-138.
[42]N. Boudeau, A. Lejeune, J.C. Gelin, 2002, “Influence of material and process pa-rameters on the development of necking and bursting in flange and tube hydro-forming”, International Journal of Mechanical Sciences, Vol.125-126, pp.849-855.
[43]Nishant Jain, Jyhwen Wang, Richard Alexander, 2004, “Finite element analysis of dual hydroforming processes”, Journal of Materials Processing Technology, Vol.145, pp.59-65.
[44]P. Groche, R. Steinheimer, D. Schmoeckel, 2003, “Process Stability in the Tube Hydroforming Process”,CIRP Annals-Manufacturing Technology, Vol.52, pp.229-232.
[45]P. Ray, B.J. Mac Donald, 2004, “Determination of the optimal load path for tube hydroforming process using a fuzzy load control algorithm and finite element analysis”, Finite Elements in Analysis and Design, Vol.41, pp.173-192.
[46]P. Ray, B.J. Mac Donald, 2005, “Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes”, International Journal of Mechanical Sciences, Vol.47, pp.1498-1518.
[47]Quang-Cherng Hsu, Sio-Hou Lei, 2000, “Development and analysis for the large-scale tee-forming process”, Journal of Materials Processing Technology, Vol.104, pp.265-270.
[48]RaminHashemi, Ahmad Assempour, EhsanMasoumi Khalil Abad, 2009, “Imple-mentation of the forming limit stress diagram to obtain suitable load path in tube hydroforming considering M-K model”, Materials and Design, Vol.30, pp.3545-3553.
[49]Shijian Yuan, Xiaosong Wang, Gang Liu, Z.R. Wang, 2007, “Control and use of wrinkles in tube hydroforming”, Journal of Materials Processing Technology, Vol.182, pp.6-11.
[50]T. Hama, T. Ohkubo, K. Kurisu, H. Fujimoto, H. Takuda, 2006, “Formability of tube hydroforming under various loading paths”, Journal of Materials Processing Technology, Vol.177, pp.676-679.
[51]W.J. Song, J. Kim, B.S. Kang, 2007, “Experimental and analytical evaluation on flow stress of tubular material for tube hydroforming simulation”, Journal of Mate-rials Processing Technology, Vol.191, pp.368-371.
[52]W.J. Song, S.C. Heo, J. Kim, B.S. Kang, 2006, “Investigation on preformed shape design to improve formability in tube hydroforming process using FEM”, Journal of Materials Processing Technology, Vol.177, pp.658-662.
[53]Xianfeng Chen, Shuhui Li, Zhongqi Yu, Zhongqin Lin, 2012, “Study on experi-mental approaches of forming limit curve for tube hydroforming”,The International Journal of Advanced Manufacturing Technology, Vol.61, pp.87-100.
[54]Xianfeng Chen, Zhongqi Yu, Bo Hou, Shuhui Li, Zhongqin Lin, 2011, “A theoret-ical and experimental study on forming limit diagram for a seamed tube hydro-forming”, Journal of Materials Processing Technology, Vol.211, pp.2012-2021.
[55]Yang Lianfa, Guo Cheng, 2006, “A simple experimental tooling with internal pressure source used for evaluation of material formability in tube hydroforming”, Journal of Materials Processing Technology, Vol.180, pp.310-317.
[56]Yeong-Maw Hwang, Yi-Kai Lin, 2002, “Analysis and finite element simulation of the bulge hydroforming process”, Journal of Materials Processing Technology, Vol.125-126, pp.821-825.
[57]YingyotAue-U-Lan, Gracious Ngaile, TaylanAltan, 2004, “Optimizing tube hy-droforming using process simulation and experimental verification”, Journal of Materials Processing Technology, Vol.146, pp.137-143.段

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔