跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊松諺
研究生(外文):Song-Yan Zhuang
論文名稱:表面形貌對微U型彎曲之影響分析
論文名稱(外文):Effect of Surface Topography on Micro Draw-bending
指導教授:林恆勝林恆勝引用關係
指導教授(外文):Heng-Sheng Lin
口試委員:許源泉張朝誠林恆勝
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:微成形表面形貌
外文關鍵詞:Surface Topography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
隨著日新月異的科技發展,產品的微小化帶動金屬微成形的技術需求,當產品尺寸縮小,則在微成形過程之徹體力權重減少而表面力權重增加,因此潤滑效應對成形影響的比重加劇。在金屬薄板的成形製造過程中,輥軋造成表面形貌的改變會影響潤滑條件,因此調整工件上的表面形貌可影響金屬成形時的潤滑效應,進而達到控制金屬材料流動的效果。

本研究選用不鏽鋼(SUS304)和銅(C1100)兩種板材,厚度包括0.05、0.1和0.2 mm三種,分別代表微觀、介觀及巨觀之成形條件,成形速度則選用0.1、1、10 mm/s三種來觀察,透過車削與噴砂的輥輪,以壓印轉寫加工來取得縱向/橫向與均向的表面形貌,以進行三種形貌對板材之潤滑效果進行分析。

實驗結果顯示微U型彎曲因表面形貌所產生之潤滑袋會影響其潤滑效應而使其成形負荷有所差異,且在成形速度越快情況下,差異會更加明顯,巨觀板材與介觀板材在不同速度下皆以均向形貌所對應成形負荷為最低,而在微觀薄板在速度1、10 mm/s時,因均向形貌板材上潤滑袋數量減少,潤滑效益降低,因此橫向形貌會比均向形貌板材有更好潤滑效果,成形負荷為最低。

Through the rapid development in technology, the miniaturization of products has driven the demand for better realization in the micro metal forming process. Micro sheet metal forming becomes more susceptible to friction attributed to the decrease in the weighting of body force and the increase in surface force, as the size of work piece decreases. The surface topography will influence friction condition caused by rolling process on the thin metal sheet manufacturing process. Therefore, controlling the work piece with surface topography can influence lubricating effect on metal forming as well as adjusting the material flow. In this work, stainless steel and copper sheets were utilized.

Three thickness gauges of work piece 0.05, 0.1 and 0.2 mm were used to represent the micro, meso and macro forming conditions, respectively. Three forming speed 0.1, 1, 10 mm/s were selected in observing the effect of lubricant hydrodynamics. Longitudinal, transverse or isotropic lay conditions were obtained through imprinting the textured rolls produced by grinding and sand blasting methods.

The results show that the lubricant pockets caused by surface texturing will affect the lubrication as well as the forming load in micro draw-bending. The variation in load will become significant as the forming speed increases. The isotropic surface lay produces the lowest load in the macro and meso forming conditions. While in the micro forming of the thin sheets at the forming speeds of 1 and 10 mm/s, the number of the lubricant pockets decreases and causes the degrading in lubrication. The transverse lays provide better lubrication than that of isotropic lays and produces the lowest forming load.

目錄
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 5
1.4 論文架構 7
二、基礎理論 9
2.1 材料機械性質 9
2.2 潤滑 12
2.2.2潤滑劑 15
2.3熱處理 16
三、材料試驗 19
3.1材料介紹 19
3.2表面行貌 21
3.3表面輪廓儀與粗糙度 27
3.4 塑性變形 31
3.5 拉伸試驗 32
3.5.1應力與應變 33
3.5.2塑性應變比 39
3.5.3冪次定律 42
3.5.4金相試驗 45
四、模擬與研究方法 47
4.1模擬流程 48
4.2實驗流程 52
4.3模具設計 54
4.4實驗設備 56
4.4.1線切割加工機 56
4.4.2電子式沖壓床 56
4.4.3光學顯微鏡 57
4.4.4表面粗度量測儀 58
五、結果與討論 59
5.1模擬應力圖 59
5.2負荷行程圖 62
5.3潤滑接觸 73
5.4模擬與實際負荷差異 74
六、結論 75
七、未來展望 76
參考文獻 77
簡歷 79

[1]Linti H-S, 1998, “A Mixed Lubrication Model for Cold Strip Rolling, ” Ph.D. dissertation, Northwestern University, Evanston, Illinois, USA.
[2]Sasawat Mahabunphachai, Muammer Koc, Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales, International Journal of Machine Tools & Manufacture 48 (2008) 1014–1029.
[3]Valive, R. Z. 1997, Structure and Mechanical Properties of Ultrafinc-Grained, Material Science and Engineering, A234-236.
[4]M. M. Moshksar, A. Zamanian, 1997, Optimization of the tool geometry in the deep drawing of aluminum, Journal of Materials Processing Technology, Vol. 72, pp.363-370.
[5]U. Engel, R. Eckstein, 2002, Micro forming-from basic research to its realization, Journal of Materials Processing Technology,Vol 125-126,pp. 93-99.
[6]Mark Colgan, John Monaghan, 2003, “Deep drawing process:analysis and experiment” Journal of Materials Processing Technology, Vol. 132, pp.35-41.
[7]J. T. Gau. C. Prinicpe, J. Wang, 2006, An Experimental Study on Size Effects on Flow Stress and Formability of Aluminum and Brass for Micro forming, Journal of Materials Processing Technology, Vol. 184, pp.42-46.
[8]H. Hoffmann, S. Hong, 2006, Tensile Test of very thin Sheet Metal and Determination of Flow Stress Considering the Scaling Effect, CIRP Annals -Manufacturing Technology, Volume 55, Issue 1, 2006, Pages 263–266.
[9]H. L. Costa. I. M. Hutchings, 2007, Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions, Tribology International, Volume 40, Issue 8, August 2007, Pages 1227–1238.
[10]Dong Hwan Park & Prasad K. D. V. Yarlagadda, 2008, Effects of punch load for elliptical deep drawing product of automotive parts, Journal of Materials Processing Technology, Vol.35, pp.814-820.
[11]Linfa Peng, Xinmin Lai, Hye-Jin Lee, Jung-Han Song, Jun Ni, 2009, Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model, Material Science and Engineering A526 pp. 93-99.
[12]H.L. Costa1, I .M. Hutchings, 2009, Effects of die surface patterning on lubrication in strip drawing, Journal of Materials Processing Technology, Volume 209, Issue 3, 1 February 2009, Pages 1175–1180.
[13]W.L. Chan, M.W. Fu , J. Lu, 2011,Experimental and simulation study of deformation behavior in micro-compound extrusion process, Materials & Design, Volume 32, Issue 2, February 2011, Pages 525–534.
[14]M.W. Fu, W.L. Chan, 2011, Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation, Materials & Design, Volume 32, Issue 10, December 2011, Pages 4738–4746.
[15]J.H. Deng, M.W. Fu, W.L. Chan, 2011, Size effect on material surface deformation behavior in micro-forming process, Materials Science and Engineering: A, Volume 528, Issues 13–14, 25 May 2011, Pages 4799–4806.
[16]W.L. Chan, M.W. Fu , B. Yang, 2011,Study of size effect in micro-extrusion process of pure copper, Materials & Design, Volume 32, Issue 7, August 2011, Pages 3772–3782.
[17]M.W. Fu, B. Yang, W.L. Chan,2013,Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet, Journal of Materials Processing Technology, Volume 213, Issue 1, January 2013, Pages 101–110.
[18]歐陽渭城,2001,沖壓加工法,全華科技圖書股份有限公司。
[19]余煥騰,陳適範,1994,金屬塑性加工學,全華科技圖書股份有限公司。
[20]http://www.eefocus.com/book/08-07/470211215520316.html,人民郵電出版社。
[21]http://www.shs.net.tw/front/bin/ptdetail.phtml?Part=0980504_03,雙合金屬工業股份有限公司。
[22]http://www.landon.com.tw/blog/,聯東金屬有限公司。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top