(3.236.175.108) 您好!臺灣時間:2021/02/27 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王冠詠
研究生(外文):Guan-Yong Wang
論文名稱:紅汞與聚維酮碘應用於染料敏化太陽電池研究
論文名稱(外文):Study of Mercurochrome and Povidone-iodine Used in Dye-sensitized Solar Cells
指導教授:劉世崑劉世崑引用關係陳進祥陳進祥引用關係
指導教授(外文):Shin-Kun LiuChin-Hsiang Chen
口試委員:林彥勝陳進祥劉世崑
口試委員(外文):Yen-Sheng LinChin-Hsiang ChenShin-Kun Liu
口試日期:2015-01-13
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:83
中文關鍵詞:紅汞聚維酮碘光敏化劑混和染料染料敏化
外文關鍵詞:mercurochromepovidone-iodinemixed dyephotosensitizerdye-sensitized solar cell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係將化學有機染料應用於染敏太陽電池,分別選用紅汞、聚維酮碘及由兩者混合之染料溶液應用於染敏太陽電池之製作。本研究共為三大部分:第一部分,選用紅汞作為染敏太陽電池中的光敏化劑。我們將市售紅汞染料使用純淨去離子水稀釋;分別由原莫耳濃度26.6 mM稀釋至最低0.0133 mM,共有11種莫耳濃度變化。當染料溶液之莫耳濃度達0.133 mM時,所備製的工作電極與染料層在450 ~ 550 nm範圍有最佳的吸收譜線,致使所製成的染敏太陽電池具有1.213%的光電轉換效率。
第二部分,選用聚維酮碘作為染敏太陽電池中的光敏化劑。我們將市售聚維酮碘染料使用純淨去離子水稀釋;分別由原莫耳濃度274 mM稀釋至最低0.0274 mM,共有5種濃度變化。當染料溶液之莫耳濃度達27.4 mM時,所備製的工作電極染料層在400 ~ 500 nm範圍有最佳的吸收譜線,致使所製成的染敏太陽電池具有0.054%的光電轉換效率。
第三部分,將上述的紅汞與聚維酮碘混合作為染敏太陽電池中的光敏化劑;在製程中,混合溶液以紅汞為主材料,聚維酮碘為副材料,依比例分別調配成數種不同濃度之染料溶液。當混合染料溶液中紅汞的莫耳濃度達0.133 mM且聚維酮碘的莫耳濃度達0.274 mM時,所備製的工作電極與染料層具有最佳的可見光吸收譜線,優於由各別單一染料所備製的工作電極與染料層。最後,所製成的染敏太陽電池經量測具有1.306%的光電轉換效率,皆優於前兩部份的實驗結果。
In this work, mercurochrome, povidone-iodine, and the mixture of both dyes are used as the photosensitizer of the dye-sensitized solar cells (DSSCs). Three phases of the experimental results can be summarized as follows.
In phase 1, mercurochrome is used as the photosensitizer of the DSSCs. Comonly used mercurochrome solution is diluted by the addition of deionized water, and the mole concentration of the resultant solution varies from 26.6 mM to 0.0133 mM, totally 11 different variations. The working electrode is immersed in the dye solution for 24 hours and the resultant electrode/dye structure goes through the absorbance measurement. The best result in the visible range is found when the structure is made from the immersion in the solution with a mole concentration of 0.133 mM. The resultant DSSC achieves a conversion efficiency of 1.213%, which is also the best among the 11 types of DSSCs.
In phase 2, povidone-iodine is used as the photosensitizer of the DSSCs. Comonly used povidone-iodine solution is diluted by the addition of deionized water, and the mole concentration of the resultant solution varies from 274 mM to 0.0274 mM, totally 5 different variations. The working electrode is immersed in the dye solution for 24 hours and the resultant electrode/dye structure goes through the absorbance measurement. The best result in the visible range is found when the structure is made from the immersion in the solution with a mole concentration of 0.274 mM. The resultant DSSC achieves a conversion efficiency of 0.054%, which is also the best among the 5 types of DSSCs.
In phase 3. a mixture of mercurochrome and povidone-iodine solutions is used as the photosensitizer of the DSSCs. The working electrode is immersed in the mixed dye solution for 24 hours and the resultant electrode/dye structure goes through the absorbance measurement. The best result in the visible range is found when the electrode is immersed in the solution with mercurochrome concentration of 0.133 mM and povidone-iodine concentration of 0.274 mM. The resultant DSSC achieves a conversion efficiency of 1.306%, which is batter then the results obtained in phase1 and phase 2.

摘要..........I
Abstract..........II
致謝..........IV
目錄..........V
圖目錄..........VIII
表目錄..........X
第一章 緒論..........1
1.1 全球能源趨勢..........1
1.1.1 化石能源..........1
1.1.2 可再生能源..........2
1.1.3 太陽電池發展..........4
1.2 染敏太陽電池現況..........6
1.2.1 染敏太陽電池結構設計..........6
1.2.2 染敏太陽電池發電原理..........7
1.2.3 染敏太陽電池市場優勢..........9
1.3 文獻探討..........10
1.3.1 紅汞相關文獻..........10
1.3.2 聚維酮碘相關文獻..........12
1.3.3 混和染料相關文獻..........13
1.4 研究動機..........15
1.5 論文架構..........16
第二章 實驗流程..........17
2.1 實驗架構..........17
2.2 清洗導電玻璃基板..........19
2.2.1 所需材料..........19
2.2.2 超音波震盪器..........19
2.2.3 實驗步驟..........19
2.3 工作電極備製..........20
2.3.1 所需材料..........20
2.3.2 旋轉塗佈機..........20
2.3.3 實驗步驟..........21
2.4 二氧化鈦熱處理..........22
2.4.1 高溫氣氛控制爐管..........22
2.4.2 實驗步驟..........22
2.5 染料調製..........23
2.5.1 所需材料..........23
2.5.2 實驗步驟..........23
2.6 對電極備製..........24
2.6.1 所需材料..........24
2.6.2 電子束蒸鍍機..........24
2.6.3 實驗步驟..........25
2.7 電解液調配..........26
2.7.1 所需材料..........26
2.7.2 實驗步驟..........26
2.8 實驗量測方法..........27
2.8.1 國際標準色卡比對法..........27
2.8.2 紫外可見光分光光譜量測..........27
2.8.3 霍爾效應量測..........28
2.8.4 太陽光模擬量測..........28
第三章 結果與討論..........29
3.1 紅汞染敏太陽電池..........29
3.1.1 色卡分析..........29
3.1.2 光吸收率分析..........32
3.1.3 霍爾效應量測..........35
3.1.4 光電特性量測..........37
3.2 聚維酮碘染敏太陽電池..........40
3.2.1 色卡分析..........40
3.2.2 光吸收率分析..........42
3.2.3 霍爾效應量測..........44
3.2.4 光電特性量測..........46
3.3 混合染敏太陽電池之一..........50
3.3.1 色卡分析..........50
3.3.2 光吸收率分析..........52
3.3.3 霍爾效應量測..........53
3.3.4 光電特性量測..........55
3.4 混合染敏太陽電池之二..........58
3.4.1 色卡分析..........58
3.4.2 光吸收率分析..........60
3.4.3 霍爾效應量測..........61
3.4.4 光電特性量測..........63
3.5 各種染敏太陽電池實驗結果比較..........66
3.5.1 色卡分析..........66
3.5.2 光吸收率分析..........68
3.5.3 霍爾效應量測..........70
3.5.4 光電特性量測..........72
第四章 總結..........74
4.1 結論..........74
4.2 未來工作..........75
參考文獻..........76
簡 歷..........82

[1]World Energy Outlook 2012, International Energy Agency (IEA), pp. 53-54, 2012.
[2]劉漢元,能源革命改變21世紀,中國言實出版社,[Online]http://www.tongwei.com/special/2010/0707/328.html,2010年。
[3]「化石燃料可開採年限」,http://en.wikipedia.org/wiki/Fossil_fuel,2014/12/17。
[4]吳再益,台灣地區的長期能源發展策略,財團法人台灣綜合研究院,第8頁,[Online]http://www.ctci.org.tw/,2009年。
[5]「可再生能源用途」,http://en.wikipedia.org/wiki/Renewable_energy,2014/12/17。
[6]王秋森,「通往永續能源之路」,環保資訊月刊,第132期,[Online] http://www.fengtay.org.tw/paper.asp?page=2009&num=1110&num2=150,2009年。
[7]World in Transition―Towards Sustainable Energy Systems, German Advisory Council on Global Change (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen, WBGU), 2003.
[8]「在2060年為世界提供最多能源的將是太陽能」, http://www.bloomberg.com/archive/news/,2014/12/17。
[9]林江財,發展高效率矽晶太陽電池,太陽光電產業協會,[Online]http://www.tpvia.org.tw/,2012年。
[10]Next-Generation High Efficiency Crystalline Si Solar Cell Technology and Market Forecast (2008-2015), Solar&Energy, 2011.
[11]「太陽能模組介紹」,http://www.anjitek.com/index.html,2014/12/17。
[12]凌拯民,薄膜太陽電池,[Online]http://eshare.stust.edu.tw/View/44274,2010年。
[13]「光動能手錶構造」,http://www.citizenwatch.com.tw/technology.asp, 2014/12/17。
[14]「太陽電池發展」,http://www.tdp-dsc.com/index.php,2014/12/17。
[15]「DSSC光敏染料軟性太陽能板」,http://www.g-watt.com.tw/solar/,2014/12/17。
[16]「串疊型太陽電池介紹」,http://www.digitimes.com.tw/tw/bizinfo/,2014/12/17。
[17]「太陽電池定義」,http://en.wikipedia.org/wiki/Solar_cell,2014/12/17。
[18]B. O’Regan, and M. Grätzel, “A. Low-Cost, High-efficiency solar-cell based on dyesensitised colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
[19]S. R. Scully, M. T. Lloyd, R. Herrera, E. P. Giannelis, and G. G. Malliaras, “Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte porous oxide network and the back electrode,” Synthetic Metals, vol. 144, no. 3, pp. 291–296, 2004.
[20]M. J. Griffith, A. J. Mozer, G. Tsekouras, Y. Dong, P. Wagner, K. Wagner, G. G. Wallace, S. Mori, and D. L. Officer, “Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film,” Applied Physics Letters, 98, Article 163502, 2011.
[21]M. I. Kimpa, M. Momoh, K. U. Isah, H. N. Yahya, and M. M. Ndamitso, “Photoelectric Characterization of Dye Sensitized Solar Cells Using Natural Dye from Pawpaw Leaf and Flame Tree Flower as Sensitizers,” Materials Sciences and Applications, Materials Sciences and Applications, vol. 3, pp. 281-286, 2012.
[22]M. Gratzel, “Dye-Sensitized Solar Cell,” Journal of Photochemistry & Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.
[23]A. F. Nogueira, C. Longo, and M. A. D. Paoli, “Polymers in dye sensitized solar cells: overview and perspectives,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1455–1468, 2004.
[24]S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, W. Lee, J. Park, K. Kim, N. G. Park, and C. Kim, “A highly efficient organic sensitizer for dye-sensitized solar cells,” The Royal Society of Chemistry, no. 46, pp. 4887-4889, 2007.
[25]H. Chang, H. M. Wu, T. L. Chen, K. D. Huang, C. S. Jwo, and Y. J. Lo, “Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea,” Journal of Alloys and Compounds, vol. 495, no. 2, pp. 606–610, 2010.
[26]Y. Ren , Y. Z. Zheng, J. Zhao, J. F. Chen, W. Zhou and X. Tao, “A comparative study on indoline dye- and ruthenium complex-sensitized hierarchically structured ZnO solar cells,” Electrochemistry Communications, vol. 16, pp. 57-60, 2012.
[27]Z. Chen, F. Li, and C. Huang, “Organic D-π-A Dyes for Dye-Sensitized Solar Cell,” Current Organic Chemistry, vol. 11, pp. 1241-1258, 2007.
[28]A. S. Karmakar, and J. P. Ruparelia, “A Critical Review on Dye Sensitized Solar Cells,” Institute of technology, Nirma University, Article 382481, 2011.
[29]「染敏太陽電池內部傳輸機制圖」,http://www.fu-berlin.de/,2014/12/17。
[30]「染敏太陽能電池特色」,http://en.wikipedia.org/wiki/Dye-sensitized_solar_cell,2014/12/17。
[31]「染敏太陽電池市場分析」,http://www.moneydj.com/,2014/12/17。
[32]「染敏太陽電池優勢」,http://www.digitimes.com.tw/event/,2014/12/17。
[33]「染敏太陽電池應用」,http://www.energytrend.com.tw/,2014/12/17。
[34]「最高效率染敏太陽電池」,http://lpi.epfl.ch/,2014/12/17。
[35]「染敏太陽電池發電成本估算」,http://www.dcac.com.tw/,2014/12/17。
[36]陳信宏,「染料敏化太陽能電池近期發展」,光速雙月刊,第84期,第22-28頁,[Online] http://www.pida.org.tw/,2009年。
[37]Dye Sensitized Solar Cells (DSSC/DSC) 2013-2023: Technologies, Markets, Players, IDTechEx Ltd., 2013.
[38]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Solar Energy Materials & Solar Cells, vol. 64, pp. 115-134,2000.
[39]C. H. Ku, and J. J. Wu, “Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells,” Nanotechnology, vol. 18, Article 505706, 2007.
[40]W. H. Lai, Y. H. Su, L. G. Teoh, and M. H. Hon, “Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry , vol. 195, pp. 307–313, 2008.
[41]J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku, and J. Y. Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells,” Applied Physics Letters, vol. 90, Article 213109, 2007.
[42]C. H. Ku, and J. J. Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells,” Applied Physics Letters, vol. 91, Article 093117, 2007.
[43]E. Guillén, F. Casanueva, J.A. Anta, A. Vega-Poot, G. Oskam, R. Alcántara, C. Fernández-Lorenzo, and J. Martín-Calleja, “Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 200, pp. 364–370, 2008.
[44]Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, and C. W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Applied Physics Letters, vol. 94, Article 063308, 2009.
[45]Y. H. Chang, C. Y. Liao, H. P. Wang, Y. L. Wei, T. F. Guo, and Y. F. Chiang, “Chemical Structure of ZnO Nanorod Array on a DSSC Photoanode,” NSTI-Nanotech 2010, California, June 21-24, 2010.
[46]P. M. Sirimanne, H. C. Weerasinghe, G. P. Simon, and Y. B. Cheng, “Preparation of chemically sintered ZnO films and their application in dye sensitized solar cells formed on plastic substrates,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 228 , pp. 15-21, 2012.
[47]Baviskar, and P. Kishor, Synthesis of ZnO thin film and its application to Dye Sensitized Solar Cell, North Maharashtra University, Jalgaon, 2011.
[48]S. M. Mahpeykar, J. Koohsorkhi, and H. Ghafoori-fard, “Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application,” Nanotechnology, vol. 23, Article 165602, 2012.
[49]P. A. Galindo, F. Feo, R. García, E. Gómez, J. Borja, and F. Fernández, “Mercurochrome allergy. Immediate and delayed hypersensitivity,” Allergy, vol. 52, pp. 1138-1141, 1997.
[50]「紅汞化學結構」,http://mulicia.pixnet.net/blog,2014/12/17。
[51]李怡葶,含螺旋芴雙噻吩有機染料應用於染料敏化太陽能電池,碩士論文,國立中央大學,桃園,2009年。
[52]P. J. V. d. Broek, L. F. Buys, and R. V. Furth, “Interaction of Povidone-lodine Compounds, Phagocytic Cells, and Microorganisms,” Antimicrobial Agents and Chemotherapy, vol. 22, pp. 593-597, 1982.
[53]J. J. Zeelie, and T. J. McCarthy, “Effects of copper and zinc ions on the germicidal properties of two popular pharmaceutical antiseptic agents cetylpyridinium chloride and povidone-iodine,” Analyst, vol. 123, pp. 503-507, 1998.
[54]崔孟晉,「染料敏化太陽電池電解質材料近況發展」,工業材料雜誌,第257期,[Online] http://www.materialsnet.com.tw/DocView.aspx?id=6901,2008年。
[55]Y. Z. Zheng, X. Tao, Q. Hou, D. T. Wang, W. L. Zhou, and J. F. Chen, “Iodine-Doped ZnO Nanocrystalline Aggregates for Improved Dye-Sensitized Solar Cells,” Chemistry of Materials, vol. 23, pp. 3-5, 2011.
[56]徐英展、林建村,「染料敏化太陽能電池之染料設計與發展」,中央研究院週報,第1203期,第2-4頁,[Online] http://www.sinica.edu.tw/index.shtml,2009年。
[57]H. Chang, and Y. J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells,” Solar Energy, vol. 84, pp. 1833-1837, 2010.
[58]M. M. Noor, M. H. Buraidah, S. N. F. Yusuf, M. A. Careem, S. R. Majid, and A. K. Arof, “Performance of Dye-Sensitized Solar Cells with (PVDF-HFP)-KI-EC-PC Electrolyte and Different DyeMaterials,” International Journal of Photoenergy, Article 960487, 5 pages, 2011.
[59]M. I. Kimpa, M. Momoh, K. U. Isah, H. N. Yahya, and M. M. Ndamitso, “Photoelectric Characterization of Dye Sensitized Solar Cells Using Natural Dye from Pawpaw Leaf and Flame Tree Flower as Sensitizers,” Materials Sciences and Applications, vol. 3, pp. 281-286, 2012.
[60]H. Chang, M. J. Kao, T. L. Chen, C. H. Chen, K. C. Cho, and X. R. Lai, “Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells,” International Journal of Photoenergy, Article 159502, 8 pages, 2013.
[61]徐漢嶸,氧化鋅阻擋層應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學,高雄,2010年。
[62]蘇芃因,氧化物阻擋層應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學,高雄,2012年。
[63]黃冠智,旋轉塗佈與退火處理應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學,高雄,2009年。
[64]「聲波性質介紹」,http://physics.info/sound/,2014/12/17。
[65]「超音波震盪器介紹」,http://www.taiwanlab.com.tw/,2014/12/17。
[66]「旋轉塗佈機原理」,http://cmnst.ncku.edu.tw/bin/home.php,2014/12/17。
[67]李再成、蔡家宸、郭銘駿,染料敏化太陽能電池之特性分析,聖約翰科技大學-改善師資研究成果著作,[Online]http://personnel.sju.edu.tw/,2010年。
[68]黃建彰,染料敏化太陽能電池用之TiO2電極的製備,碩士論文,國立中央大學,桃園,2009年。
[69]「電子束蒸鍍機原理」,http://www.ndl.narl.org.tw/web/index.html,2014/12/17。
[70]「彩通卡發展」,http://en.wikipedia.org/wiki/Pantone,2014/12/17。
[71]「彩通卡商品介紹」,http://www.pantone.com/pages/pantone/index.aspx,2014/12/17。
[72]「紫外可見光分光光譜儀量測系統照片」,http://www.rdmag.com/,2014/12/17。
[73]「紫外可見光分光光譜儀功能」,http://www.cc.ntut.edu.tw/~wwwemo/main1.htm,2014/12/17。
[74]「霍爾效應量測系統照片」,http://four-point-probes.com/,2014/12/17。
[75]「霍爾效應量測原理」,http://140.120.11.121/chinese/chineseindex.htm,2014/12/17。
[76]「太陽光模擬器量測系統照片」,http://www.azom.com/,2014/12/17。
[77]「可見光光譜與波長對應關係」,http://en.wikipedia.org/wiki/Visible_spectrum,2014/12/17。
[78]「紅汞材料特性」,http://en.wikipedia.org/wiki/Merbromin,2014/12/17。
[79]王繹維,藉由濺鍍氧化鈮阻擋層提升天然染料敏化太陽能電池轉換效率之研究,碩士論文,國立高雄應用科技大學,高雄,2014年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔