跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:華健儒
研究生(外文):Chien-Ju Hua
論文名稱:銑削加工製程之接觸電阻值即時量測系統
論文名稱(外文):Real-time measuring system of contact resistance for milling operations
指導教授:姚創文姚創文引用關係
指導教授(外文):Chuang-Wen Yao
口試委員:李旺龍張國明徐中華姚創文
口試委員(外文):Wang-Long LiKuo-Ming ChangCheung-Hwa HsuChuang-Wen Yao
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具系碩士在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:微歐姆計超音波檢測接觸面積接觸電阻
外文關鍵詞:Micro-Ohm MeterUltrasonic Wave DetectionContact AreaContact resistance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:2
本研究開發一套銑削加工製程中接觸阻抗值之即時量測系統。使用的方法是運用Agilent34420A之微歐姆計(Micro-Ohm Meter)配合Labview軟體來進行接觸阻抗值(Contact resistance)之量測。當銑削過程中,銑刀與被加工金屬件若沒有接觸,微歐姆計會呈現高阻值狀態,若有接觸,則微歐姆計將會測出相對應之低阻值之接觸電阻反應。量測金屬間之低阻值部份,則是利用微歐姆儀器的GPIB介面與PC 之USB做連結,並以電腦程式控制其量測取樣動作。其即時量測系統對於所量測出的數值,能夠各別的統計與分析,並有自動產生報表之功能,以利後續各類銑刀建立資料庫之建檔,與後續大量收集銑刀資料庫之使用。

刀具磨耗的量測,過去一般皆是在實驗室內以手工設備量測,或由現場有經驗之銑床師傅靠多年之加工經驗進行判斷,此種做法,除耗時、無法收集大量數據外,也因從事人員的不同,造成刀具磨耗數據之可信度受到質疑。有鑑於此,本研究開發了一套銑刀接觸電阻之自動量測系統,此量測系統主要運用於量測銑刀加工之接觸電阻外,另一特色是能間接量測出銑削加工過程中,銑刀與被加工件因加工溫升所產生之阻抗變化,以上皆是在銑削過程中直接量測出接觸電阻值,免去以往之經驗法與冗長費時之實驗室量測手法,故能迅速取得真正之量測值,節省量測時間。

本研究以超音波檢測來掃描銑刀與被加工金屬材之間的接觸面積,經由影像分析軟體處理,計算出新銑刀(未磨耗)與舊銑刀(嚴重磨耗)之接觸面積,依照不同接觸負載與接觸率,新銑刀(未磨耗)接觸面積範圍介於5 mm²到38 mm²之間。舊銑刀(嚴重磨耗)接觸面積範圍介於5 mm²到 70 mm²之間。根據實驗的結果,刀具磨耗後會增加接觸面積30 mm²以上,根據上述之實測經驗值,找出接觸面積與接觸阻抗之關係,研究結果發現量測接觸面積與電阻之間的相關變化,經實際量測結果顯示,當刀具磨耗越多,其接觸面積也越大,相對所接觸的電阻越小,因此證明其接觸面積與電阻成反比關係。銑削加工過程中,溫升越高,銑刀與被加工物間之電阻越大,由資料顯示,溫度每增加攝氏1度,接觸阻抗增加1.5mΩ,因此證明其加工溫升與電阻成正比關係。


The research develops a set of instant measurement system of contact resistance value during milling process. The using method is to apply Agilent 34420A (Micro-Ohm Meter) and Labview software to measure contact resistance. During milling process, if the milling cutter doesn’t contact processed metals, the Micro-Ohm Meter would appear a high resistance status. If the milling cutter contacts processed metals, the Micro-Ohm Meter would measure contact resistance response of corresponding low resistance value. When low resistance value of metals is measured, utilize the GPIB interface of the Micro-Ohm Meter to connect USB of computers, and use computer programs to control the measurement sampling actions. The instant measurement system can respectively count and analyze the data it measures. Its automatic reports function is good for establishing database of various milling cutters and collecting milling cutter information in the future.

In the past, the measurement of cutters abrasion was usually carried out in laboratories with manual devices, or judged by experienced milling machine masters on site based on their years of processing experience. The method costs a lot of time and can’t collect abundant data. Due to different workers, the reliance of cutter abrasion data is also doubted. Therefore, the research has developed a set of instant measurement system of contact resistance value. In addition to being applied to measuring contact resistance of milling cutters, the measurement system can indirectly measure impedance changes caused by milling cutters and processed items due to processing temperature rise. In all the conditions above, contact resistance can be directly measured during milling process. The previous experience method and time-consuming laboratory measurement method are abandoned. The new method can rapidly obtains authentic measurement value and save measurement time.

The research utilizes ultrasonic wave detection to scan the contact area between milling cutters and processing metals. After the disposal by image analytical software, calculate the contact area between new milling cutters (no abrasion) and old milling cutters (serious abrasion). According to different contact loads and contact rate, the contact area of new milling cutters (no abrasion) is between 5 mm² and 38 mm².The contact area of old milling cutters (no abrasion) is between 5 mm² and 70 mm². According to the laboratory results, the contact area can be increased by 30 mm² after cutters are abraded. Based on the actual measurement experience value above, find out the relationship between contact area and contact resistance, the research result discovers the relevant changes of contact areas and resistance. The actual measurement result shows that when cutters are more abraded, the contact area is bigger, and the corresponding contact resistance is smaller. Therefore, it proves the inverse relationship of contact area and resistance. During the milling process, the higher the temperature rise, the bigger the resistance between contact area and resistance. Data shows that when temperature is increased by 1 degree, the contact resistance is increased by 1.5mΩ. Thus, it proves the direct proportion between temperature rise and resistance.


摘要 ------------------------------------------------------I
Abstract-----------------------------------------------------II
誌謝 ----------------------------------------------------III
目錄 -----------------------------------------------------IV
表目錄 -----------------------------------------------------VI
圖目錄 -----------------------------------------------------IX
符號說明 ------------------------------------------------------X
第一章 緒論---------------------------------------------------1
1.1 前言---------------------------------------------------1
1.2 Ragnar Holm的接觸理論-----------------------------------2
1.3 超音波探測----------------------------------------------2
1.4 四線式量測阻抗方法---------------------------------------3
1.5 銑削加工------------------------------------------------5
1.6 刀具磨耗量測系統-----------------------------------------6
1.7 論文架構------------------------------------------------7

第二章 文獻回顧-------------------------------------------------8
2.1 刀具磨耗量測系統文獻--------------------------------------8
2.2 切削力文獻-----------------------------------------------9
2.3 超音波檢測文獻-------------------------------------------10
2.4 接觸電阻文獻---------------------------------------------12

第三章 研究方法、設備與步驟--------------------------------------14
3.1 研究方法------------------------------------------------14
3.2 研究設備------------------------------------------------18
3.3 研究步驟------------------------------------------------40

第四章 實驗結果與討論-------------------------------------------45
4.1 銑削加工中接觸阻抗值之即時量測-----------------------------45
4.1.1 實驗(一):銑削加工中接觸阻抗值之即時量測---------------45
4.1.2 銑削加工中接觸阻抗值結果討論-------------------------46
4.2 銑刀溫升之接觸阻抗值即時量測-------------------------------48
4.2.1 實驗(二): 銑刀溫升之接觸阻抗值即時量測----------------48
4.2.2 銑刀溫升之接觸阻抗值結果與討論----------------------- 48
4.3 超音波掃描接觸面積---------------------------------------- 49
4.3.1 實驗(三): 超音波掃描接觸面積------------------------ 49
4.3.2 超音波掃描接觸面積結果與討論------------------------- 50
4.4 接觸面積與接觸電阻之靜態關聯性測試-------------------------- 51
4.4.1 實驗(四): 靜態接觸電阻測試---------------------------51
4.4.2 接觸面積與接觸電阻之靜態關聯性結果與討論---------------53

第五章 結論-----------------------------------------------------54
5.1 結論-----------------------------------------------------54
5.2 未來展望--------------------------------------------------56
5.3 研究心得--------------------------------------------------57

第六章 參考文獻--------------------------------------------------58
簡歷 ---------------------------------------------------------62

【1】 Holm, R., Electric Contacts: Theory and Applications,Springer, pp.111-116 , [1967].
【2】 Hertz, H., The Contact of Elastic Solids, J. ReineAngew. Math., Vol. 92, pp156–171, [1881].
【3】 Greenwood,J.A. , Williamson, J.B.P, Contact of nominally flat surfaces, Proc. R. Soc.Lond. A, Vol 295, pp 300–319, [1966].
【4】 梁有燈,駱錦榮,邱奕契 ,影像套合於鈦基鍍膜面銑削刀具磨耗的自動量測 ,中國機械工程學會第二十一屆全國學術研討會論文集,大華技術學院,機械與自動化系, [2004]。
【5】 Sawai, N., Park, H., and Song, J., Automated Measurement of Tool Wear Using An Image Processing System, Int. J. Japan Society Precision Engineering, Vol.30, No.2, pp.112-117 , [1996].
【6】 Maeda, Y., Uchida, H., and Yamamoto, A., Estimation of Wear Land Width of Cutting Tool Flank with the Aid of Digital Image Processing Technique, Bull. Japan Soc. of Prec. Engg, Vol.21, No.3, pp.211-7 , [1987].
【7】 Bopp, U., Sajima, T., and Hiromichi Onikura , Automatic Drill Wear Measurement Using Colour Image Processing and Artificial Neural Network, Int. J. Japan Society Precision Engineering , Vol.31, No.4, pp.287-292 , [1997].
【8】 Teshima, T., Shibasaka, T., Takuma, M., and Yamamoto , A., Estimation of Cutting Tool Life by Processing Tool Image Data with Neural Network, CIRP Annals, Vol.42, No.1, pp.59-62 , [1993].
【9】 Lin, S. C., and Lin, R. J., Tool Wear Monitoring in Face Milling Using Force Signals, Wear, Vol. 198 , pp. 136-142 , [1996].
【10】Choudhury, S. K. and Rath Subhashree, In-process Tool Wear Estimation in Milling Using Cutting Force Model, Vol. 99, pp.
113-119 , [2000].
【11】A. Ber and M. Goldblatt , The Influence of Temperature Gradient on Cutting Tool’s life , CIRP annals, Vol. 38, pp. 69-73 , [1989].
【12】Bravo, U., Altuzarra, O., Lo´pez de Lacalle, L. N., Sa´nchez, J. A. and Campa, F. J., Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine, International Journal of Machine Tools & Manufacture, Vol. 45, pp. 1669-1680 , [2005].
【13】Thevenot, V., Arnaud, L., Dessein, G. Cazenave-Larroche, G., Integration of Dynamic Behaviour Variations in the Stability Lobes Method: 3D Lobes Construction and Application to Thin-walled Structure Milling, Int. J. of Adv Manuf. Technol., Vol. 27, pp. 638-644 , [2006].
【14】Thompson, R. B. and Thompson, D. O.,Nondestructive Evaluation of Aging Infrastructure, Proc. IEEE, 73, 1716, SPIE Proceedings Volumes, pp2454-2458 , [1985].
【15】Yoneyama, H., Nakashiro, M. and Murakami, K.,Assessment for Creep Damages by Ultrasonic Techniques, IHI Engineering Review, Vol.22, No.1, pp.1-6 , [1989].
【16】Kendall, K. and Tabor, D., An ultrasonic study of the area of contact between stationary and sliding surfaces. Proc. Roy.Soc. London A 323, pp321–340 , [1971].
【17】Nagy, P. B.,Ultrasonic Classification of Imperfect Interfaces, Journal of Nondestructive Evaluation, Vol. 11, pp.127-139 , [1992].
【18】Dwyer-Joyce, R.S., Drinkwater and B.W., Analysis of Contact Pressure using Ultrasonic Reflection, Experimental Mechanics, Proceedings of 11th Annual Conference on Experimental Mechanics ,Balkema, Rotterdam, pp747-754 , [1998].
【19】Schramma, R. E., Ultrasonic measurement of stress in railroad wheels, Review of scientific Instruments, Vol 70, No2, pp1468-1472 , [1999].
【20】Pau, M., Measurements of nominal contact area in metallic interfaces: a comparison between an ultrasonic method and a pressure-sensitive film, Wear, Vol. 249, pp533–535 , [2001].
【21】Kogut, L. and Etsion, I. Elastic-plastic contact analysis of a sphere and a rigid 7at. J. Appl.Mech. 69, 657–662 , [2002].
【22】Baltazar, A., Rokhlin, S. and Pecorari, C., On the Relationship between Ultrasonic and Micromechanical Properties of Contacting Rough Surfaces, Journal of the Mechanics and Physics of Solids,Vol. 50, pp. 1397-1416 , [2002].
【23】Dwyer-Joyce, R. S. and Drinkwater, B. W., In Situ Measurement of Contact Area and Pressure Distribution in Machine Elements, Tribology Letters, Vol. 14, pp. 41-52 , [2003].
【24】Lewis, R., Marshall, M. B., Dwyer-Joyce and R. S., Measurement of Interface Pressure in Interference Fits, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 219, pp. 127-139 , [2005].
【25】Marshall, M. B., Lewis, R., Dwyer-Joyce, R. S., Olofsson, U., Björklund, S., Experimental Characterization of Wheel-Rail Contact Patch Evolution, J. Tribol., Vol. 128, pp. 493-504, [2006].
【26】Marshall, M. B., Lewis, Dwyer-Joyce and R. S., Characterisation of Contact Pressure Distribution in Bolted Joints, Strain, Vol. 42, pp. 31-43 , [2006].
【27】林建中,不同接觸面積的矽化鈦接觸之可靠性測試,國立清華大學電機工程學系碩士論文,新竹,[1993]。
【28】劉思賢,鎳/銅歐姆接觸在p型氮化鎵上之研究,國立清華大學電子工程研究所碩士論文,新竹,[2001]。
【29】林立偉,端子接觸電阻之自動量測及其相關變因之研究,國立台北科技大學機電整合研究所系碩士論文,台北,[2009]。
【30】簡延勛,以超音波方法量測鳩尾槽銑刀之接觸面積,國立高雄應用科技大學,模具工程系碩士論文,高雄,[2013]。
【31】王永強,多穴模具監控系統開發,國立高雄應用科技大學,模具工程系碩士論文,高雄,[2015]。
【32】簡淑櫻,石英之超聲波量測,國立成功大學地球科學研究所碩士論文,台南,[2002]。
【33】曾俊豪,光柵投射式雷射超音波量測系統及應用,國立成功大學機械工程學系碩士論文,台南,[2003]。
【34】劉育賢,超音波探傷技術於疲勞裂縫性質檢測之應用,國立成功大學系統暨船舶機電工程研究所碩士論文,台南,[2004]。
【35】李佳緯,模具幾何在超音波輔助微沖壓成形之影響研究,國立中興大學機械工程學系碩士論文,台中,[2002]。
【36】張力允,超音波原理與特性,義守大學醫學影像暨放射科學系,高雄,[2010]。
【37】彭朋畿、姬俊宇,相位陣列式超音波應用於銲道之檢測,中龍鋼鐵股份有限公司,台中,[2009]。
【38】彭朋畿、張沛倫、李國鏈、施嘉裕,超音波應用於鋼板之檢測,中龍鋼鐵股份有限公司,台中,[2008]。
【39】李士人、張晉昌,非破壞性檢測-超音波檢測(UT),行政院勞工委員會職業訓練局,台北,[2001]。
【40】鄭振東,超音波工程,全華科技圖書股份有限公司,第1-14頁,[1999]。
【41】黃茂坤,工業用超音波檢測實務彙編,華欣綜合印製工業股份有限公司,第1-15頁,[1996]。
【42】唐新民,超音波入門及應用,無線電界雜誌社,第1-19頁,[1996]。
【43】島川正憲,超音波工學理論及實務,復漢出版社,第1-3頁,[1990]。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top