(3.237.20.246) 您好!臺灣時間:2021/04/16 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李培暋
研究生(外文):Lee Pei-Min
論文名稱:主動式巴倫與雜訊相消低雜訊放大器之研製
論文名稱(外文):Design of Active Balun and Noise Cancelling Low Noise Amplifier
指導教授:陳永裕陳永裕引用關係高瑄苓
指導教授(外文):Chen Yung-YuKao Hsuan-Ling
口試委員:陳永裕高瑄苓吳常熙
口試委員(外文):Chen Yung-YuKao Hsuan-LingWu Chang-Shi
口試日期:2014-07-23
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:32
中文關鍵詞:雜訊相消主動式巴倫
外文關鍵詞:Noise CancellingActive Balun
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,射頻積體電路設計為晶片發展中的重要項目之一,維持高頻帶操作頻率並增加頻寬範圍,是未來通信系統技術的趨勢,除此之外,設計者考量低成本、低功率以及低面積之射頻電路已為重要趨勢。矽射頻元件的資料傳輸範圍最遠可達10公里以上,且矽射頻元件本身具有製程較簡單、電路密度高、低成本以及低功率的特性,因此成為IC設計者極具魅力的選擇之一。
本論文中的研究方向為主動式巴倫與雜訊相消之低雜訊放大器設計,第一顆主動式巴倫採用0.35μm GaN-on-Si HEMT製程,使用平衡式架構設計,順向增益(S21)及(S31)分別為5.7dB與4.6dB,頻寬2.6GHz,相位差180±5度,線性度port2及port3分別為8dBm與10dBm,輸出功率833.6mW,整體面積大小3mm2。
次之為雜訊相消低雜訊放大器,此電路採用TSMC 0.18um CMOS 1P6M Mixed-mode台積電製程,順向增益(S21)在3.6~6GHz為21dB,輸入反射係數(S11)小於-10dB,輸出反射係數(S22)小於-10dB,雜訊指數(NF)在3.6~6GHz為2.2 ~2.6dB,線性度(IIP3)為-8dBm,輸出功率59.75mW,實際電路面積大小1.56mm2 。

The measured isolations of the prototype are less than -20 dB in all operating frequency bands. In recent years, The circuit design of RF is an important item of chip development, maintaining the high band of operating and increase the bandwidth range,Is trend of communication systems in the future, In addition, consider of the designers low cost, low power and low area is important trend of RF circuit.
Data transmission range of Silicon RF components above the up to 10 km, RF silicon components has simple process , high circuit density, low cost and low power characteristics by itself, therefore IC designers become one of the charismatic select.
In this thesis research Design of Active Balun and Noise Cancelling Low Noise Amplifier,the first one is active balun using 0.35μm GaN-on-Si HEMT process,design balanced architecture, Forward gain (S21) and (S31), respectively 5.7dB and 4.6dB, Bandwidth 2.6GHz, Phase difference equal to 180 ± 5 degrees, Linearity of port2 and Linearity of port3, respectively 8dBm and 10dBm,Power dissipation 833.6mW, total circuit area is 3mm2.
The second part is Noise Canceling Low Noise Amplifier, using TSMC 0.18um CMOS 1P6M Mixed-mode TSMC process, Forward gain (S21) is 21dB at the 3.6~6GHz,Input return loss (S11) less than-10dB, Output return loss (S22) less than-10dB,Noise Figure is 2.2 ~2.6dB at the 3.6~6GHz, Linearity is -8dBm, Power.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究論文大綱 2
第二章 低雜訊放大器簡介 3
2.1 低雜訊放大器介紹 3
2.2 文獻回顧 3
第三章 主動式巴倫 11
3.1 電路架構 11
3.2 電路佈局平面圖 12
3.3 輸入阻抗匹配分析 13
3.4 模擬與量測結果 15
第四章 雜訊相消低雜訊放大器 21
4.1 電路架構 21
4.2 電路佈局平面圖 22
4.3 輸入阻抗匹配分析 23
4.4 輸出阻抗匹配分析 23
4.5 雜訊分析 23
4.6 模擬與量測結果 25
第五章 結論 30
參考文獻 31

[1]A. Mirvakili, M. Yavari, “A Noise-Canceling CMOS LNA Design for the Upper Band of UWB DS-CDMA Receivers,” Circuits and Systems, 2009. Symposium on IEEE International Circuits and Systems, May 2009, pp. 24-27.
[2]D. Navaratne, A. Beaulieu, L. Belostotski, “Noise Figure Optimization of a Noise-Cancelling Wide-band CMOS LNA,” IEEE International NEWCAS Conference, June 2010, pp. 125-128.
[3]S. Joo, T. Y. Choi, J. Y. Kim, B. Jung, “A 3 to 5 GHz UWB LNA with a Low-Power Balanced Active Balun,” Symposium IEEE Radio Frequency Integrated Circuits, June 2009, pp. 303-306.
[4]H. H. Chiang, F. C. Huang, C. S. Wang, C. K. Wang, “A 90nm CMOS V-Band Low-Nosie Active Balun With Broadband Phase-Correction Technique,” IEEE Journal of Solid-State Circuits, Vol. 46, Issue 11, Nov. 2011, pp. 2583-2591.
[5]C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an orig-inal K-band active balun with improved broadband balanced behavior,”IEEE T-MTT, Vol. 15, Issue 4, Apr. 2005, pp. 280–282.
[6]M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd European Microwave Conference, Munich, Germany,Oct. 2003, pp. 495–498.
[7]E. Tiiliharju, and K. A. I. Halonen, “An active differential broad-band phase splitter for quadrature-modulator applications,” IEEE T-MTT, Vol. 53 Issue 2, Feb. 2005, pp. 679–686.
[8]T. T. Hsu, and C. N. Kuo, “Low power 8-GHz ultra-wideband active balun,” in IEEE SiRF., Jan 2006, pp. 365-368.
[9]G. Z. Fatin, Z. D. Koozehkanani, H. Sjoland, “A 90 nm CMOS +11 dBm IIP3 4mW Dual-Band LNA for Cellular Handsets,” IEEE Microwave and Wireless Components Letters, Vol. 20, Issue 9, Sept. 2010 , pp. 513 – 515.
[10]M. Y. Hsu, C. S. Wang, C. K. Wang, “A Low Power High Reliability Dual-Path Noise-Cancelling LNA for WSN Applications,” IEEE Custom Integrated Circuits Conference, Sept. 2010 , pp. 1 – 4.
[11]Z. Wang, K. S. Yeo, K. Ma, Z. Wang , “An Inductorless and Capacitorless LNA with Noise and Distortion Cancelation,” International Conference on Computer Research and Development, March 2011, pp. 270-274.
[12]I. Bastos, L. B. Oliveira, J. P. Oliveira, J. Goes, M. M. Silva, “Balun LNA with Continuosly Controlable Gain and with Noise and Distortion Cancellation,” Symposium on IEEE International Circuits and Systems, May 2012, pp. 2143-2146.
[13]A. R. A. Kumar, A. Dutta, S. G. Singh, “Noise-Cancelled Subthreshold UWB LNA for Wireless Sensor Network Application,” Conference on IEEE International Ultra-Wideband, Sept. 2012, pp. 383-386.
[14]M. Parvizi, K. Allidina, F. Nabki, M. El-Gamal, ” A 0.4V Ultra Low-Power UWB CMOS LNA Employing Noise Cancellation,” Symposiumon IEEE International Circuits and Systems, May 2013, pp. 2369-2372.
[15]B. Guo, X. Li , “A 1.6–9.7 GHz CMOS LNA Linearized by Post Distortion Technique,” IEEE Microwave and Wireless Components Letters, Nov. 2013, pp. 608-610.
[16]A. Mirvakili, M. Yavari, “A Compact 2.4/5.2-GHz CMOS Dual-Band Low-Noise Amplifier,” Symposium on IEEE International Circuits and Systems, May 2009, pp. 217-220.
[17]D. Navaratne, A. Beaulieu, L. Belostotski, ” Noise Figure Optimization of a Noise-Cancelling Wide-band CMOS LNA,” IEEE International NEWCAS Conference, June 2010, pp. 125-128.
[18]A. Jamalkhah, A. Hakimi, “An Ultra-Wideband Common Gate LNA With gm-Boosted And Noise Cancelling Techniques,” Iranian Conference on Electrical Engineering, May 2013, pp. 1-5.
[19]M. Forouzanfar, S. Naseh, “High Gain CMOS UWB LNA Employing Thermal Noise Cancellation,” Conference on IEEE International Ultra-Wideband, Sept. 2009, pp. 118 – 122.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔