跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁敏哲
研究生(外文):Wong, Min-Jhe
論文名稱:新穎微波介電陶瓷研究與應用
論文名稱(外文):Study and Application of Novel Microwave Dielectric Ceramics
指導教授:陳逸謙陳逸謙引用關係
指導教授(外文):Chen, Yih-Chien
口試委員:黃正亮尤正祺許正興曾靜芳陳逸謙
口試委員(外文):Huang, Cheng-LiangYu, Cheng-ChiHsu, Cheng-HsingTseng, Ching-FangChen, Yih-Chien
口試日期:2015-07-20
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:177
中文關鍵詞:L型單極天線微波介電陶瓷鈮鐵礦螢石
外文關鍵詞:L-shaped Monopole AntennaMicrowave Dielectric CeramicColumbiteFluorite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討Ca(Nb1-xTax)2O6(x=0-0.1)、Nd2MeO6(Me=Mo、W)及NdTi0.5W0.5O4微波介電特性,CaNb2O6利用傳統固態反應法製備並燒結在不同溫度,接著利用Ta5+替代Nb5+改善品質因數,由實驗結果得知CaNb2O6燒結在1400 ℃持溫4小時,具有微波介電特性: εr為18.1;Q×f為50,000 GHz;τf為-54 ppm/℃。Ca(Nb0.93Ta0.07)2O6燒結在1400 ℃持溫4小時,具有微波介電特性: εr為17.7;Q×f為117,300 GHz;τf為-51 ppm/℃。Nd2MeO6(Me=Mo、W)及NdTi0.5W0.5O4利用傳統固態反應法製備並燒結在不同溫度,由實驗結果得知Nd2MoO6燒結在1350 ℃持溫4小時,具有微波介電特性: εr為13.8;Q×f為66,400 GHz;τf為-53ppm/℃。
L型單極天線,利用FR4基板以及自製基板來實現。自製基板為Nd2MoO6,燒結在1350 ℃持溫4小時,基板厚度為1.6 mm,介電常數為13.8。由實驗結果得知,天線製作在自製基板和FR4比較,可縮減面積31.48 %,操作頻段涵蓋WLAN/WiMAX頻段,低頻、中頻及高頻的頻寬分別為11.44 %、22.87 %及23.94 %( S11<6 dB),低頻、中頻及高頻最大增益分別為 2.02、4.41及5.55 dBi。

In this study, microwave dielctric properties of Ca(Nb1-xTax)2O6(x=0-0.1), Nd2MeO6 (Me=Mo、W) and NdTi0.5W0.5O4 were investigated. The CaNb2O6 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The CaNb2O6 ceramics were synthesized and some of the Nb5+ ions were substituted by Ta5+ ions to improve Q×f. The CaNb2O6 ceramic sintered at 1400 ℃ for 4 h had a dielectric constant of 18.1, a Q×f of 50,000 GHz, and a temperature coefficient of resonant frequency of -54 ppm/℃. The Ca(Nb0.93Ta0.07)2O6 ceramic sintered at 1400 ℃ for 4 h had a dielectric constant of 17.7, a Q×f of 117,300 GHz, and a temperature coefficient of resonant frequency of -51 ppm/℃. The Nd2MoO6 sintered at 1350 ℃for 4 h had a dielectric constant of 13.8, a Q×f of 66,400 GHz, and a temperature coefficient of resonant frequency of -53 ppm/℃.
The L-shaped monopole antenna was realized on FR4 and Nd2MoO6 ceramic substrate. The Nd2MoO6 ceramic substrate has 1.6 mm of thickness, and a dielectric constant of 13.8. The antenna area of L-shaped monopole antenna using Nd2MoO6 ceramic substrate can be reduced by 31.48 %, as compared with that using FR4 substrate. The 6 dB S11 bandwidth of the proposed antenna covered WLAN and WiMAX bands simultaneously. The proposed antenna has a 6 dB return loss with bandwidth 11.44 %, 22.87 %, and 23.94 % in the lower, middle, and higher bands, respectively. The proposed antenna has peak gain about 2.02, 4.41 and 5.55 dBi in the lower, middle, and higher bands, respectively.

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 介電材料原理 4
2.1 微波介電特性 4
2.1.1 介電常數(Dielectric Constant :εr) 4
2.1.2 品質因數(Quality Factor :Q) 5
2.1.3 諧振頻率溫度係數(Temperature Coefficient of Resonate Frequency:τf) 8
2.2 介電原理 9
2.3 介質共振器原理 12
2.4 材料結構 17
2.5 燒結原理 20
2.5.1 燒結的過程 21
2.5.2 燒結的種類 21
第三章 天線原理 24
3.1天線功能與參數 24
3.1.1輸入阻抗(Input Impedance) 25
3.1.2 諧振頻率(Resonant Frequency) 26
3.1.3 頻寬(Bandwidth) 27
3.1.4 輻射場型(Radiation Pattern) 27
3.1.5 極化(Polarization) 30
3.1.6 輻射效率(Radiation Efficiency) 32
3.1.7 指向性(Directional) 33
3.1.8 增益(Gain) 34
3.2微帶線原理 35
3.2.1 微帶線原理及結構 35
3.2.2 微帶線傳播模態 36
3.2.3 微帶線公式分析及考量 37
3.2.3.1 等效介電常數及特性阻抗 37
3.2.3.2 微帶線公式分析 37
3.2.3.3 微帶線各項參數 39
3.2.3.4 微帶線的損失 40
3.3微帶天線原理 41
3.3.1 微帶天線概述 41
3.3.2 空腔模型理論 42
3.4 偶極天線 43
3.5 單極天線 46
3.5.1 鏡像理論 46
3.5.2 單極天線 47
第四章 實驗流程與量測方法 49
4.1 微波介電材料的製備步驟 49
4.1.1 CaNb2O6材料 49
4.1.2 Ca(Nb1-xTax)2O6材料 50
4.1.3 Nd2MeO6 (Me=Mo、W)材料 51
4.1.4 NdTi0.5W0.5O4 材料 52
4.2 微波介電材料的特性分析與量測 57
4.2.1 X-Ray繞射分析 57
4.2.2 掃描式電子顯微鏡分析 57
4.2.3 穿透式電子顯微鏡 58
4.2.4 密度量測 60
4.2.5 微波介電特性量測 60
4.2.5.1 共振模式的鑑別 62
4.2.5.2 介電常數之量測 64
4.2.5.3 Q值之量測 65
4.2.5.4 諧振頻率溫度係數(τf)之量測 67
4.3 L型單極天線設計 68
4.3.1 L型單極天線設計 68
4.3.2 L型單極天線製作 72
4.3.3 L型單極天線量測 72
4.3.4 L型單極天線輻射場型量測 74
第五章 實驗結果與討論 76
5.1 CaNb2O6材料 76
5.1.1 CaNb2O6材料分析 76
5.1.1.1 CaNb2O6之XRD分析 76
5.1.1.2 CaNb2O6之TEM分析 81
5.1.1.3 CaNb2O6之SEM分析 82
5.1.1.4 CaNb2O6之密度與相對密度分析 86
5.1.1.5 CaNb2O6之介電常數分析 87
5.1.1.6 CaNb2O6之品質因數分析 88
5.1.1.7 CaNb2O6之諧振頻率溫度係分析 90
5.1.1.8 CaNb2O6之不同持溫時間微波介電特性分析 91
5.2 Ca(Nb1-xTax)2O6材料分析 93
5.2.1 Ca(Nb1-xTax)2O6材料分析 93
5.2.1.1 Ca(Nb1-xTax)2O6之XRD分析 93
5.2.1.2 Ca(Nb0.93Ta0.07)2O6之TEM分析 94
5.2.1.3 Ca(Nb1-xTax)2O6之SEM分析 95
5.2.1.4 Ca(Nb1-xTax)2O6之密度分析 100
5.2.1.5 Ca(Nb1-xTax)2O6之介電常數分析 101
5.2.1.6 Ca(Nb1-xTax)2O6之品質因數分析 103
5.2.1.7 Ca(Nb1-xTax)2O6之諧振頻率溫度係數分析 104
5.3 Nd2MeO6 (Me=Mo、W)材料分析 105
5.3.1 Nd2MoO6材料分析 105
5.3.1.1 Nd2MoO6之XRD分析 105
5.3.1.2 Nd2MoO6之TEM分析 107
5.3.1.3 Nd2MoO6之SEM分析 108
5.3.1.4 Nd2MoO6之密度與相對密度分析 113
5.3.1.5 Nd2MoO6之介電常數分析 114
5.3.1.6 Nd2MoO6之品質因數分析 114
5.3.1.7 Nd2MoO6之諧振頻率溫度係分析 115
5.3.1.8 Nd2MoO6之不同持溫時間微波介電特性分析 116
5.3.2 Nd2WO6材料 117
5.3.2.1 Nd2WO6之XRD分析 117
5.3.2.2 Nd2WO6之TEM分析 119
5.3.2.3 Nd2WO6之SEM分析 120
5.3.2.4 Nd2WO6之密度與相對密度分析 125
5.3.2.5 Nd2WO6之介電常數分析 125
5.3.2.6 Nd2WO6之品質因數分析 126
5.3.2.7 Nd2WO6之諧振頻率溫度係數分析 127
5.3.2.8 Nd2WO6之不同持溫時間微波介電特性分析 128
5.4 NdTi0.5W0.5O4材料 129
5.4.1 NdTi0.5W0.5O4材料分析 129
5.4.1.1 NdTi0.5W0.5O4之XRD分析 129
5.4.1.2 NdTi0.5W0.5O4之TEM分析 133
5.4.1.3 NdTi0.5W0.5O4之SEM分析 134
5.4.1.4 NdTi0.5W0.5O4之密度與相對密度分析 138
5.4.1.5 NdTi0.5W0.5O4之介電常數分析 139
5.4.1.6 NdTi0.5W0.5O4之品質因數分析 140
5.4.1.7 NdTi0.5W0.5O4之諧振頻率溫度係分析 141
5.4.1.8 NdTi0.5W0.5O4之不同持溫時間微波介電特性分析 142
5.5天線設計 144
5.5.1 L型單極天線設計在FR4基板 144
5.5.1.1 L型單極天線設計在FR4基板與模擬 146
5.5.1.2 L型單極天線調整參數模擬 150
5.5.1.3 L型單極天線在FR4基板量測結果 154
5.5.2 L型單極天線設計在自製基板 157
5.5.2.1 L型單極天線設計在自製基板與模擬 157
5.5.2.2 L型單極天線調整參數模擬 162
5.5.2.3 L型單極天線在自製基板量測結果 167
第六章 結論 172
參考文獻 174

[1]Zhang, Y. C., Wang, J., Yue, Z. X., Gui, Z. L. and Li, L. T., "Effects of Mg2+ Substitution on Microstructure and Microwave Dielectric Properties of (Zn1-xMgx)Nb2O6 Ceramics," Ceramics International, 30, 1, 87-91 (2004).
[2]Park, J. H., Choi, Y. J., Nahm, S., and Park, J. G., "Crystal structure and microwave dielectric properties of ZnTi(Nb1-xTax)2O8 ceramics," Journal of Alloys and Compounds, 509, 24, 6908-6912 (2011).
[3]Alonso, J. A., Rivillas, F., Martı´nez-Lope, M. J. and Pomjakushin, V., " Preparation and Structural Study from Neutron Diffraction Data of R2MoO6 (R=Dy, Ho, Er, Tm, Yb, Y)," Journal of Solid State Chemistry, 117, 7, 2470-2476 (2004).
[4]Voronkova, V. I., Kharitonova, E. P. and Belov, D. A., "Synthesis and Electrical Properties of A New Fluorite-Like Anionic Conductor in The Nd2O3–MoO3 System (43–47 mol% Nd2O3) Mixed Conductors," Solid State Ionics, 225, 4, 654-657 (2012).
[5]Zhang, P., Song, Z., Wang, Y., Han, Y., Dong, H. and Li, H., "Effect of CaTiO3 Addition on Microwave Dielectric Properties of NdNbO4 Ceramics as Multi-Function Material," Journal of Alloys and Compounds, 581, 25, 741-746 (2013).
[6]Bosman, A. J. and Havinga, E. E., "Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds," Physical Review Letter, 129, 4, 1593-1600 (1963).
[7]Shannon, R. D., "Dielectric Polarizabilities of Ions in Oxides and Fluorides, "Journal of Applied Physics, 73, 1, 348-366 (1993).

[8]李偉晟,La(Mg0.5Sn0.5)O3陶瓷微波介電特性之改善極高K值天線之應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2012)。
[9]郭仁財譯,微波工程,台北:高立圖書館有限公司 (2001)。
[10]吳朗,電子陶瓷—介電陶瓷,台北:全欣資訊圖書股份有限公司 (1994)。
[11]Cheng D. K., Field and Wave Electromafnetics, Boston: Addison-wesley (1989).
[12]邱碧秀,電子陶瓷材料,台北:徐氏基金會 (1997)。
[13]魏炯權,電子材料工程,台北:全華圖書公司 (2005)。
[14]Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction to Ceramics, 2nd Ed., New York: John Wiley & Sons (1976).
[15]Pozar, D. M., Microwave Engineering, 3rd Ed., New York: John Wiley & Sons ( 2005).
[16]Kajfez, D., "Computed Modal Field Distribution for Isolated Dielectric Resonators," Microwave Symposium Digest, 1984 IEEE MTT-S International, 32, 12, 1609-1616 (1984).
[17]Kajfez, D., "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, 13, 152-161 (1983).
[18]Kajfez, D. and Guillon, P., Dielectric Resonators., New York: Artech House (1989).
[19]Huppmann, W. J. and Petzow, G., "The Elementary Mechanisms of Liquid Sintering," Sintering Processes. Materials Science Research, New York, 189-201 (1980).
[20]Kingery, W. D., "Densification During Sintering in The Presence of A Liquid Phase," Journal of Applied Physics, 30, 3, 301-306 (1959).
[21]Marion, J. E., "Liquid Phase Sintering of Ceramics," Journal of the American Society, 70, 10, 708-713 (1987).

[22]Raj, R. and Chyung, C. K., "Solution Precipitation Creep in Glass Ceramics," Acta Metall, 29, 1, 159-166 (1980).
[23] Kraus, J. D. and Marhefka, R. J., Antennas for All Applications, India: McGraw-Hill (2003).
[24]白光弘,天線原理及應用,台北:明文出版社 (1992)。
[25]Warren, L. S. and Gary, A. T., Antenna Theory and Design, New York: John Wiley & Sons (1998).
[26]Constantine, A. B., Antenna Theory, New York: John Wiley & Sons (2005).
[27]Gupta, K. C., Garg, R., Bahl, I. and Bhartis, E., Microstrip Lines and Slotlines, 2nd Ed., Artech House, Boston (1996).
[28]Hammerstard, E. O., Proceedings of the European Microwave Conference, 268-272 (1975).
[29]Pucel, R. A., Masse, D. J. and Hartwin, C. E., “Losses in Microstrip,” IEEE Trans., MIT-16, June, 342-350 (1968).
[30]Gupta, K. C. and Abouzahra, M. D., Analysis and Design of Planar Microwave Components, ISBN 0-7803-0437-3, Chap. 11 (1994).
[31]Deschamps, G. A., Microstrip Microwave Antennas, presented at the 3rd. USAF Symp. on Antennas (1953).
[32]Stutzman, W. L. and Thiele, G., Antenna Theory and Design, 2rd Edition John Wiley & Sons (1998).
[33]Hakki, B. W. and Coleman, P. D., "A Dielectric Resonator Method of Measuring Inductive Capacities in The Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, 8, 4, 402-410 (1960).
[34]Courtney, W. E., "Analysis and Evaluation of A Method of Measuring The Complex Permittivity of Microwave Insulations," IEEE Transactions on Microwave Theory and Techniques, 18, 8, 476-485 (1970).
[35]Wheless, P. and Kajfez, D., "The Use of Higher Resonant Modes in Measuring The Dielectric Constant of Dielectric Resonators," IEEE Transactions on Microwave Theory and Techniques - Symposium Dig., Atlanta, GA, 473-476 (1985).
[36]Kobayashi, Y. and Katoh, N., "Microwave Measurement of Resonator Method," IEEE Transactions on Microwave Theory and Techniques, 33, 7, 586-592 (1985).
[37]Kobayashi, Y. and Tanaka, S., "Resonant Method of A Dielectric Resonator Short-Circuited at Both Ends by Parallel Conducting Plates," IEEE Transactions on Microwave Theory and Techniques, 28, 10, 1077-1085 (1980).
[38]Wise, P. L., Reaney, I. M., Lee, W. E., Price, T. J., Iddles, D. M. and Cannell, D.S., "Structure-Microwave Property Relations in (SrxCa(1-x))n+1TinO3n+1," Journal of the European Ceramic Society, 21, 10-11, 1723-1726 (2001).
[39]Higashi, T. and Makino, T., "Resonant Frequency Stability of The Dielectric Resonator on A Dielectric Substrate," IEEE Transactions on Microwave Theory and Techniques, 29, 10, 1048-1052 (1981).
[40]Li, C., Wei, X., Yan, H. and Reece, M. J., "Microwave Dielectric Properties of La3Ti2TaO11 Ceramics with Perovskite-Like Layered Structure," Journal of the European Ceramic Society, 32, 16, 4015–4020 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top