# 臺灣博碩士論文加值系統

(44.192.38.248) 您好！臺灣時間：2022/11/30 05:43

:::

### 詳目顯示

:

• 被引用:0
• 點閱:182
• 評分:
• 下載:59
• 書目收藏:0
 近年來，節能減碳是世界的趨勢，而取之不盡用之不竭的太陽能發電更是蓬勃發展，不過目前太陽能的發電效率仍低，如何提高發電效率將是全世界的科學家們研究的目標，最大功率點追蹤(maximum power point tracking , MPPT)就是一種提高效率的方法。現有的最大功率追蹤法較普遍為增量電導法、擾動觀察法及電壓迴授法等等，由於太陽能電池一般輸出電壓較低，故本文選用升壓型直流-直流轉換器作為系統中的轉換器，提升太陽能電池的輸出電壓。本文研究增量電導法最大功率追蹤太陽電池供電升壓型直流-直流轉換系統中改變負載電阻與參考電流的非線性現象，考慮轉換器操作在電感電流連續導通模式(CCM)下，一開始說明太陽能最大功率追蹤系統及轉換器工作原理，其次建構太陽能增量電導法最大功率追蹤及升壓型直流-直流轉換器的等效電路模型，之後推導出數學模型，再以MATLAB/SIMULINK建模與模擬，透過時域波形圖、相平面圖及分叉圖，探討改變負載電阻與參考電流系統由週期性穩態進入混沌的非線性現象，分析系統的混沌現象演化之機理。
 In recent years, carbon reduction is the trend of the world, and inexhaustible solar power is booming. The current efficiency of solar power generation is still low, so to improve the power generation efficiency will be the research objective to scientists all over the world. The maximum power point tracking (MPPT) is a way to improve efficiency. Existing maximum power point tracking method is more common of incremental conductance method, perturbation and observation method and voltage feedback method and so on. Because of the output voltage of the solar cell is lower than the normal one, this thesis choose boost DC - DC converter as the converter system, to enhance the output voltage of the solar cell.In this thesis the nonlinear phenomena of boost DC-DC converting solar cell system with incremental conductance method for MPPT, varying load resistance and reference current are studied. Considering converter operation in continuous conduction mode (CCM) with inductor current, Firstly the solar cell maximum power tracking system and converter working principle are explained. Secondly, the construction of solar maximum power tracking with incremental conductance method and boost DC - DC converter equivalent circuit model, then mathematical model is derived, and modeled and simulated by MATLAB / SIMULINK software package. Through the time-domain waveforms, phase plane and bifurcation diagrams, to explore the changing the load resistance and the reference current system from a periodic steady-state into the chaos of nonlinear phenomena, chaos evolution mechanism of the system is analyzed.
 摘要 iABSTRACT ii誌謝 iv表目錄 vii圖目錄 viii第一章 緒論 11.1 研究動機與背景 11.2 本論文之貢獻 31.3 本論文之組織與架構 3第二章 混沌與太陽能電池之基本觀念 52.1 前言 52.2 混沌研究的起源和理論 52.2.1 混沌之定義 82.2.2 混沌的基本特性 92.2.3 常見的混沌分析方法 112.2.4 直流-直流轉換器中混沌現象之研究現況 142.3 太陽能電池 152.3.1 太陽能電池發電原理 152.3.2 太陽能電池種類 172.3.3 單晶矽太陽能電池 182.3.4 多晶矽太陽能電池 192.3.5 太陽能電池之數學模型及特性 19第三章 升壓型直流-直流轉換器與最大功率追蹤增量電導法 243.1 前言 243.2 升壓型直流-直流轉換器 243.2.1 升壓型直流-直流轉換器之原理 243.2.2 升壓型直流-直流轉換器之離散解析 283.3 增量電導最大功率追蹤演算法 31第四章 增量電導法最大功率追蹤太陽電池供電升壓型直流-直流轉換系統模擬 354.1 前言 354.2 應用MATLAB/SIMULINK模擬增量電導法最大功率追蹤太陽電池供電升壓型直流-直流轉換系統 354.2.1 改變電阻負載之狀態 384.2.2 改變參考電流之狀態 434.2.3 增量電導法最大功率追蹤太陽電池供電升壓型直流-直流轉換系統之分叉圖 48第五章 結論 515.1 結論 515.2 未來研究方向 51參考文獻 52符號表 56
 [1]Lorenz, E. N., “Determinisitic nonperiodic flow,” J. Atmospheric Sciences, Vol. 20, No. 2, pp. 130-141, 1963.[2]Henon, M., Heiles, C., “A two-dimentional mapping with a strange attractor,” J. Astronomer, Vol. 69, 1964.[3]Ruelle, D., Takens, F., “On the nature of turbulence,” Communications in Math. Phy., Vol. 20, pp. 167-192, 1971.[4]Li, T. Y., Yorke, J. A., “Period three implies chaos,” American Math. Monthly, Vol. 82, No. 10, pp. 985-992, 1975.[5]May, R. M., “Simple mathematical models with very complicated dynamics,” Nature, Vol. 261, pp. 459-467, 1976.[6]Matsumoto, T., “A chaotic attractor from Chua's circuit,” IEEE Transactions on Circuits and Systems, Vol. 31, No. 12, pp. 1055-1058, 1984.[7]Brockett, R.W., Wood, J. R., “Understanding power converter chaotic behavior in protective and abnormal modes,” Powercon II, 1984.[8]Hamill, D. C., Jefferies, D. J., “Subharmonics and chaos in controlled switched-mode power converter,” IEEE Transactions on Circuits and Systems, Vol. 35, No. 8, pp. 1059-1061, 1988.[9]Ott, E., Grebogi, C. and Yorke, J. A. “Controlling Chaos,” Phys. Rev. Lett., pp. 1196-1199, 1990.[10]Pecora, L. M., Carroll, T. L., “Synchronization in Chaotic Syst.,” Phys. Rev. Lett, Vol. 64, pp. 821-824, 1990.[11]Tse, C. K., “Flip bifurcation and chaos in a three-state boost switching regulator,” IEEE Transactions on Circuits and Syst, Vol. 41, No. 1, pp. 16-23, 1994.[12]Tse, C. K., “Chaos from a buck switching regulator operating in discontinous mode,” Int. J. Circuit Theory and Applications, Vol. 22, No. 4, pp.263-278, 1994.[13]Podder, G., Chakrabarty, K., and Banerjee, S., “Experimental control of chaotic behavior of buck converter,” IEEE Transactions on Circuits and Syst. I, Vol. 42, No. 8, pp. 502-504, 1995.[14]Podder, G., Chakrabarty, K., and Banerjee, S., “Control of chaos in the boost converter,” IET Transactions on Electronics Letters, Vol.31, pp. 841-842, 1995.[15]Deane, J. H. B., and Hamill, D. C., “Improvement of power supply EMC by chaos,” IET Transactions on Electronics Letters, Vol. 32, No. 12, pp. 1045, 1996.[16]Banerjee, S., and Verghese (Eds.) G. C., “Nonlinear Phenomena in Power Electronics– Attractors, Bifurcations, Chaos, and Nonlinear Control,” Wiley-IEEE Press, 2001.[17]Tse C. K., “Complex Behavior of Switching Power Converters,” CRC Press, 2003.[18]Banerjee, S., Parui, S. and Gupta, A. “Dynamical effects of missed switching in current-mode controlled DC-DC converters,” IEEE Transactions on Circuits and Syst II: Express Briefs, Vol.51, No. 12, pp. 649-654, 2004.[19]Papafotiou, G. A. and Margaris, N. I. “Nonlinear discrete-time analysis of the fixed frequency switch-mode DC-DC converters dynamics,” IEEE Transactions on Circuits and Syst II: Express Briefs, Vol.52, No. 6, pp. 322-326, 2005.[20]T. Y. Li and J. A. Yorke, “Period three implies chaos,” American Math. Monthly, Vol. 82, No. 10, pp. 985-992, 1975.[21]吕金虎、陸軍安、陳士華，混沌時間序列分析及其應用，武漢大學出版社， 2001。[22]黃潤生，混沌及其應用，武漢大學出版社，2000。[23]J. H. B. Deane “Chaos in a current-mode controlled boost DC-DC converter,” IEEE Transactions on Circuits and Syst I, Vol. 39, No. 8, pp. 680-683, 1992.[24]E. Ott, C. Grebogi and J. A. Yorke, “Controlling Chaos,” Phys. Rev. Lett., Vol. 64, No. 11, pp. 1196-1199, 1990.[25]濱川圭弘，「太陽能電池與其組成」，台機社專刊，第四期，頁 16-22，2006。[26]陳家宏，太陽能電池最大功率追蹤之設計與製作，碩士論文，淡江大學電機工程學系控制系統組，2001。[27]黃鎮江，綠色能源，全華書局，第一章，頁4-11，2014。[28]簡塘軒，太陽光能電池特性模擬與分析，碩士論文，龍華科技大學電機工程系碩士班，頁26-29，2008。[29]莊嘉琛，太陽能工程-太陽能電池篇，全華書局，頁151-179，1997。[30]Ali Akbar Ghassami, Seyed Mohammad Sadeghzadeh, Asma Soleimani, “A high performance maximum power point tracker for PV systems,” International Journal of Electrical Power &Energy Systems, Vol.53, pp. 237-243, 2013.[31]伊奕光，PWM型DC/DC變換器混沌機理的研究，南京航空航天大學博士論文，2000。[32]Lihong He, Meimei Jia, Zhongwen Dong, Jianhua Wu, “Chaos control for the Boost converter under current-mode control,” IEEE of International Conference on Control and Decision , pp. 3579-3583, 2010.[33]Meimei Jia, Guoshan Zhang, “Suppressing chaotic phenomena in the Boost converter using a parameter adjustment method,” IEEE of International Conference on Intelligent Control and Automation, pp. 4082-4087, 2014.[34]Najmeh Zamani, Mehdi Niroomand, Mohammad Ataei, “Bifurcation and chaos control in power-factor-correction boost converter,” IEEE of International Conference on Electrical Engineering, pp. 1307-1312, 2014.[35]Huijun Zheng and Dingxin Shuai, “Nonlinear control of boost converter by state feedback exact linearization,” IEEE of International Conference on Control and Decision Conference, pp. 3502-3506, 2012.[36]王子明，升壓型直流-直流轉換器混沌控制之研究，碩士論文，龍華科技大學電機工程系碩士班，頁15-23，2006。[37]Himanshu Kumar, and Dr. R.K. Tripathi, “Simulation of variable incremental conductance method with direct control method using boost converter,” IEEE of International Conference on Engineering and Systems, pp. 1-5, 2012.[38]林雨澄，太陽能發電系統最大功率追蹤演算法之比較，碩士論文，龍華科技大學電機工程系碩士班，頁45-46，2011。[39]Hen-kung Wang, Po-lun Chang, Fei-hu Hsieh, Hsiang-yan Hsieh, “Nonlinear phenomenon in a current-mode controlled buck-boost converter with solar cell input via varying reference current,” IEEE of International Conference on Machine Learning and Cybernetics , Vol. 2, pp. 632-637, 2014.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 太陽能電池最大功率點追蹤之設計與製作 2 太陽能發電系統最大功率追蹤演算法之比較 3 數位式單相低功率太陽光電能轉換系統 4 基於DSP控制之獨立型太陽能供電系統 5 以數位信號處理器為基礎之太陽能發電系統之研製 6 以DSP實現太陽能電池最大功率追蹤控制 7 用於太陽能發電系統之複合式最大功率追蹤器的研製 8 新型複合式最大功率追蹤法之設計與實現 9 基於修正型增量電導法之太陽光電發電系統最大功率追蹤控制 10 燃料電池之電力系統控制 11 太陽能電池發電系統遮蔽效應下最大功率追蹤方法 12 太陽能發電系統遭遇遮蔽效應下之複合式最大功率點追蹤器之研製 13 太陽能電池輔助電動自行車之研究 14 獨立型太陽能發電之電源管理的研究 15 熱電模組最大發電功率之研究

 無相關期刊

 1 擾動觀察法最大功率追蹤太陽電池供電升降壓式直流-直流轉換系統之非線性現象 2 電流模式控制太陽能電池供電升降壓直流-直流轉換器之非線性現象 3 太陽能發電系統變動步長最大功率追蹤法研究 4 具最大功率追蹤之太陽能充電器研製 5 具最大功率追蹤控制數位化差動升壓型換流器之研製 6 具有改善太陽能最大功率追蹤之新型高升壓轉換器 7 CMOS太陽能升壓轉換器及最大功率點追蹤電路 8 太陽光電系統中最大功率追蹤法之分析與比較 9 具最大功率追蹤能力與電池保護機制之太陽能充電器研製 10 用於太陽能發電系統之可變步階最大功率追蹤器研製 11 應用於獵取太陽能之具最大功率追蹤升壓型轉換器 12 在線式智慧型太陽能最大功率追蹤之研究 13 電壓模式控制半橋降壓轉換器的非線性行為及混沌控制 14 Zn2SnO4陶瓷及薄膜介電特性之研究 15 基於Wi-Fi的智慧型燈光控制系統之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室