跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明原
研究生(外文):Ming-Yuan Hsieh
論文名稱:以電流式主動元件設計正交弦波振盪器
論文名稱(外文):Design of Quadrature Sinusoidal Oscillators Using Active Current-Mode Elements
指導教授:陳華彬陳華彬引用關係
指導教授(外文):Hua-Pin Chen
口試委員:楊萬興王三輔
口試委員(外文):Wan-Shing YangSan-Fu Wang
口試日期:2015-07-07
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:電流式主動元件電流模式正交振盪器電壓模式正交振盪器
外文關鍵詞:current-mode active componentscurrent-mode sinusoidal quadrature oscillatorvoltage-mode sinusoidal quadrature oscillator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用不同的電流模式主動元件設計兩個電壓模式正交弦波振盪器電路與兩個雙重模式正交弦波振盪器電路。第一與第二個電路使用兩個電流回授運算放大器,配合兩個接地電容器與兩個電阻器,設計電壓模式正交弦波振盪器電路。此二個電路具有下列優點:(1)可正交調整電路參數的振盪條件與振盪頻率;(2) 可利用兩個正交電壓弦波輸出信號;(3)使用兩個接地電容器,有利於電路積體化的實現;(4)具有非常低的主動與被動元件的靈敏度。第三個電路使用單一差動電壓電流傳輸轉導放大器,配合兩個接地電容器與兩個接地電阻器,設計具電壓模式與電流模式正交弦波振盪器電路。本電路具有下列優點:(1)在同一電路結構下可同時實現電壓模式與電流模式;(2)可獨立調整電路參數的振盪條件與振盪頻率;(3)可利用兩個正交電壓弦波輸出信號;(4)可利用兩個高輸出阻抗端正交電流弦波輸出信號;(5)使用兩個接地電容器與兩個接地電阻器,有利於電路積體化的實現;(6)具有非常低的主動與被動元件的靈敏度。第四個電路使用單一電流控制電流傳輸轉導放大器,配合兩個接地電容器,設計具電壓模式與電流模式正交弦波振盪器電路。本電路具有下列優點:(1)為無電阻性電路結構;(2)在同一電路結構下可同時實現電壓模式與電流模式;(3)可獨立調整電路參數的振盪條件與振盪頻率;(4)可利用兩個正交電壓弦波輸出信號;(5)可利用兩個高輸出阻抗端正交電流弦波輸出信號;(6)使用兩個接地電容器,有利於電路積體化的實現;(7)具有非常低的主動與被動元件的靈敏度。最後,我們使用H-Spice驗證電路的正確性,使用TSMC 0.18μm的製程參數,其模擬結果顯示與理論值相近。
In this thesis, two voltage-mode and two dual-mode quadrature sinusoidal oscillators using different current-mode active components are proposed. The first of two proposed voltage-mode quadrature oscillators use two current-feedback operational amplifiers, two grounded capacitors and two resistors. Both proposed oscillators exhibit the following advantages: (i) orthogonal control of the oscillation condition and oscillation frequency, (ii) availability of two quadrature sinusoidal voltage outputs, (iii) the employment two grounded capacitors ideal for integrated circuit implementation, and (iv) low active and passive sensitivity performances. The third proposed voltage-mode and current-mode quadrature sinusoidal oscillator uses a single differential voltage current conveyor transconductance amplifier, two grounded capacitors and two grounded resistors. The proposed oscillator exhibits the following advantages: (i) voltage-mode and current-mode sinusoidal quadrature oscillator without changing the circuit topology, (ii) independent control of the oscillation condition and oscillation frequency, (iii) availability of two quadrature sinusoidal voltage outputs, (iv) availability of two high-output impendence quadrature sinusoidal current outputs, (v) the employment two grounded capacitors and two grounded resistors ideal for integrated circuit implementation, and (vi) low active and passive sensitivity performances. The four proposed voltage-mode and current-mode quadrature sinusoidal oscillator uses a single current controlled current conveyor transconductance amplifier and two grounded capacitors. The proposed circuit offers two explicit quadrature current outputs and two quadrature voltage outputs. The proposed oscillator exhibits the following advantages: (i) resistorless structure, (ii) voltage-mode and current-mode sinusoidal quadrature oscillator without changing the circuit topology, (iii) independent control of the oscillation condition and oscillation frequency, (iv) availability of two quadrature sinusoidal voltage outputs, (v) availability of two high-output impendence quadrature sinusoidal current outputs, (vi) the employment two grounded capacitors ideal for integrated circuit implementation, and (vii) low active and passive sensitivity performances. Finally, we use HSPICE to prove the accuracy of the circuit with TSMC 0.18µm process technology. The results show close agreement between theory and simulation.
目錄
明志科技大學碩士學位論文指導教授推薦 i
明志科技大學碩士學位論文口試委員審定書ii
誌謝iii
摘要iv
Abstract v
目錄vii
表目錄viii
圖目錄ix
第一章 緒論 1
1.1 相關研究發展 1
1.2 研究動機 2
1.3 論文架構 4
第二章 主動元件介紹 6
2.1 第二代電流傳輸器(CCII) 6
2.2 差動電壓電流傳輸器(DVCC) 9
2.3 電流回授運算放大器(CFOA) 11
2.4 電流控制電流傳輸器(CCCII) 13
2.5 運算轉導放大器(OTA) 16
2.6 差動電壓電流傳輸轉導放大器(DVCCTA) 18
2.7 多輸出電流控制電流傳輸轉導放大器(MOCCCCTA) 20
第三章 類比電壓模式正交振盪器電路設計 22
3.1 以CFOA設計電壓模式正交振盪器文獻回顧 22
3.2 以CFOA設計電壓模式正交振盪器電路 24
第四章 類比電壓與電流模式正交振盪器電路設計 34
4.1 以DVCCTA設計電壓與電流模式振盪器文獻回顧 35
4.2 以DVCCTA設計電壓與電流模式正交振盪器電路 38
4.3 以MOCCCCTA設計電壓與電流模式振盪器文獻回顧 45
4.4 以MOCCCCTA設計電壓與電流模式正交振盪器 47
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 55
參考文獻 56
表目錄
表1 CFOA內部電路長寬比 28
表2 電路一輸出信號Vo1諧波失真分析 31
表3 電路一輸出信號Vo2諧波失真分析 32
表4 電路二輸出信號Vo1諧波失真分析 32
表5 電路二輸出信號Vo2諧波失真分析 33
表6 電路特性比較 33
表7 DVCCTA內部電路長寬比 41
表8 電壓模式輸出信號Vo1諧波失真分析 43
表9 電壓模式輸出信號Vo2諧波失真分析 43
表10 電路特性比較 44
表11 MO-CCCCTA內部電路長寬比 50
表12 電壓模式輸出信號Vo1諧波失真分析 52
表13 電壓模式輸出信號Vo2諧波失真分析 52
表14 電路特性比較 53
圖目錄
圖2-1 CCII元件符號 6
圖2-2 CCII之內部電路架構圖 7
圖2-3 本論文使用的CCII之內部電路架構圖 8
圖2-4 DVCC之元件符號 9
圖2-5 DVCC之內部電路架構圖 10
圖2-6 本論文使用的DVCC之內部電路架構圖 10
圖2-7 CFOA之元件符號 11
圖2-8 CFOA之內部電路架構圖 12
圖2-9 本論文使用之CFOA內部電路架構圖 12
圖2-10 CCCII之元件符號 13
圖2-11 正型CCCII之內部電路架構圖 14
圖2-12 負型CCCII之內部電路架構圖 14
圖2-13 正負型CCCII之內部電路架構圖 15
圖2-14 OTA之元件符號 16
圖2-15 雙輸出端正負型OTA之內部電路架構圖 17
圖2-16 DVCCTA之元件符號 18
圖2-17 DVCCTA之內部電路架構圖 19
圖2-18 本文使用的DVCCTA內部電路架構圖 19
圖2-19 MO-CCCCTA之元件符號 20
圖2-20 MO-CCCCTA之內部電路架構圖 21
圖2-21 本文使用的MO-CCCCTA之內部電路架構圖 21
圖3-1 以CFOA設計正交振盪器電路 22
圖3-2 以CFOA設計電壓模式正交振盪器電路一 24
圖3-3 以CFOA設計電壓模式正交振盪器電路二 26
圖3-4 本電路使用的CFOA內部電路架構圖 28
圖3-5 電路一輸出信號Vo1與Vo2波形圖 29
圖3-6 電路一輸出信號Vo1與Vo2頻譜圖 30
圖3-7 電路二輸出信號Vo1與Vo2波形圖 30
圖3-8 電路二輸出信號Vo1與Vo2頻譜圖 31
圖4-1 以DVCCTA設計電壓模式振盪器 35
圖4-2 以DVCCCTA設計電壓與電流模式振盪器 36
圖4-3 以DVCCTA設計電壓與電流模式正交振盪器 38
圖4-4 本電路使用的DVCCTA內部電路架構圖 40
圖4-5 振盪器輸出信號Vo1與Vo2波形圖 41
圖4-6 振盪器輸出信號Io1與Io2波形圖 42
圖4-7 振盪器輸出信號Vo1與Vo2頻譜圖 42
圖4-8 以CCCCTA設計電壓與電流模式振盪器 45
圖4-9 以MO-CCCCTA設計電壓與電流模式正交振盪器 47
圖4-10 本電路使用的MO-CCCCTA內部電路架構圖 49
圖4-11 振盪器輸出信號Vo1與Vo2波形圖 50
圖4-12 振盪器輸出信號Io1與Io2波形圖 51
圖4-13 振盪器輸出信號Vo1與Vo2頻譜圖 51

[1] B. Wilson, “Constant bandwidth voltage amplification using current conveyor,” Int. J. Electron., vol. 65, no. 5, pp. 983–988, Apr. 1988.
[2] K. C. Smith and A. S. Sedra, “The current conveyor-a new circuit building block,” Proc. IEEE, vol. 56, no. 8, pp. 1368–1369, Aug. 1968.
[3] A. Sedra and K. C. Smith, “A second generation current conveyor and its applications,” IEEE Trans. Circuit Theory, vol. 17, no. 1, pp. 132–134, Feb. 1970.
[4] W. Chiu, S. I. Liu, H. W. Tsao and J. J. Chen, “CMOS differential difference current conveyors and their applications,” IEE Proc. Circuits Devices Syst., vol. 143, no. 2, pp. 91–96, Apr. 1996.
[5] H. O. Elwan and A. M. Soliman, “Novel CMOS differential voltage current conveyor and its applications,” IEE Proc. Circuits Devices Syst., vol. 144, no. 3, pp. 195–200, Jun. 1997.
[6] A. Lahiri and M. Gupta, “Realizations of grounded negative capacitance using CFOAs,” Circ. Syst. Signal Process., vol. 30, no. 1, pp. 143–155, Feb. 2011.
[7] P. Prommee, K. Angkeaw, M. Somdunyakanok and K. Dejhan, “CMOS-based near zero-offset multiple inputs max-min circuits and its applications,” Analog Integr. Circuits Process., vol. 61, no. 1, pp. 93–105, Feb. 2009.
[8] S. Maneewan, B. Sreewirote and W. Jaikla, “Electronically tunable voltage-mode universal filter using DDCC and CCCII,” International Conference on Circuits, System and Simulation (ICCSS), pp. 322–326, Jan. 2011.
[9] T. Tsukutani, Y. Sumi and Y. Fukui, “Novel current-mode biquad filter using OTAs and DO-CCII,” Int. J. Electron., vol. 94, no. 2, pp. 99–105, Feb. 2007.
[10] N. Pandey and S. K. Paul, “VM and CM universal filters based on single DVCCTA,” Act. Passive Electron Compon., vol. 2011, Article ID 929507, 7 pages, Feb. 2011.
[11] N. Pandey, R. Bazaz and R. Manochan, “MO-CCCCTA-based floating positive and negative inductors and their applications,” J. Elect. Computer Eng., vol. 2011, Article ID 150354, 8 pages, Jun. 2011.
[12] M. T. Abuelma’atti and Sa’ad. M. Al-Shahrani, “New CFOA-based grounded-capacitor sinusoidal oscillator,” Act. Passive Electron Compon., vol. 20, no. 2, pp. 119–124, Aug. 1997.
[13] V. K. Singh, R. K. Sharma, A. K. Singh, D. R. Bhaskar and R. Senani, “Two new canonic single-CFOA oscillator with single resistor controls,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 52, no. 12, pp. 860-864, Dec. 2005.
[14] D. R. Bhaskar and R. Senani, “New CFOA based single element controlled sinusoidal oscillator,” IEEE Trans. Instrum. Meas., vol. 55, no. 6, pp. 2014–2021, Dec. 2006.
[15] P. Mongkolwai, T. Pukkalanun, T. Dumawipata and W. Tangsirirat, “CFOA-based single resistance controlled quadrature oscillator,” Annual Conference Society of Instrument and Control Engineers (SICE), pp. 1147-1150, Aug. 2008.
[16] S. Saxena and P. K. Mishra, “A novel equi-amplitude quadrature oscillator based on CFOA,” International Journal of Science and Advanced Technology (IJSAT), vol. 31, pp. 93–98, Jun. 2011.
[17] L. A. Said, A. H. Madian, A. G. Radwan and A .M. Soliman, “Current feedback operational amplifier (CFOA) based fractional order oscillators,” 21st IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 510–513, Dec. 2014.
[18] J. Mohan, B. Chaturvedi and S. Maheshwari, “Grounded components based voltage-mode quadrature oscillators,” International Conference on Multimedia Signal Processing and Communication Technologies (IMPACT), pp. 241–245, Nov. 2013.
[19] J. Jain, S. Singh, H. Srivastava and M. Goswami, “Design of wideband Current Conveyor (CC-II) based oscillator for low-voltage application using 180nm CMOS technology,” International Conference on Control, Automation, Robotics and Embedded Systems (CARE), pp. 1–5, Dec. 2013.
[20] R. Raut and N. S. Daoud, “Current-mode oscillator realization using a voltage-to-current transducer in CMOS technology,” IEE Proc. G Circuits, Devices Syst., vol. 140, no. 6, Dec. 1993.
[21] S. Pookaiyaudom, A. Thanachayanont and R. Ssitdhikorn, “Current amplitude control circuits suitable for current-mode oscillators,” Electron. Lett., vol. 33 no. 1, Jan. 1997.
[22] I. A. Khan, P. Beg and M. T. Ahmed, “First order current mode filters and multiphase sinusoidal oscillator using MOCCIIs,” International Conference on Microelectronics. (ICM), pp. 146–149, Dec. 2006.
[23] A. Leelasantitham and B. Srisuchinwong, “A low-power high-frequency all-pass-filter-based sinusoidal quadrature oscillator using CMOS current mirrors,” International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), vol. 5, pp. 1–5, Feb. 2009.
[24] M. Kumngern, B. Knobnob and K. Dejhan, “Single-resistance-controlled current-mode quadrature sinusoidal oscillator,” 6th International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, vol. 1, pp. 534–537, May. 2009.
[25] M. Kumngern, S. Junnapiya and K. Dejhan, “Current-mode multiphase sinusoidal oscillator using translinear conveyors,” 6th International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, vol. 1, pp. 538–541, May. 2009.
[26] M. Kumngern, “Electronically tunable current-mode multiphase oscillator using current-controlled CCTAs,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–4, Dec. 2010.
[27] M. Kumngern, “Current-mode multiphase sinusoidal oscillator using current-controlled current differencing transconductance amplifiers,” Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 728–731, Dec. 2010.
[28] M. Kumngern and S. Junnapiya, “A sinusoidal oscillator using translinear current conveyors,” Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 740–743, Dec. 2010.
[29] M. Kumngern, “Current-controlled current-mode multiphase oscillator using CCCDTAs,” IEEE Symposium on Computers & Informatics (ISCI), vol. 8, pp. 188–191, Mar. 2011.
[30] P. Lamun, M. Kumngern, U. Torteanchai and K. Sarsitthithum, “Tunable current-mode quadrature sinusoidal oscillator employing CCCFTAs and grounded capacitors,” 4th international conference on Intelligent Systems Modelling & Simulation (ISMS), pp. 665 –668, Jan. 2013.
[31] W. Tangsrirat and W Surakampontorn, “Single-resistance-controlled quadrature oscillator and universal biquad filter using CFOAs,” Int. J. Electron., vol. 63, no. 12, pp. 1080–1086, Dec. 2009.
[32] A. M. Soliman, “Transformation of oscillators using op amps, unity gain cells and CFOA,” Analog Integr. Circuits Process., vol. 65, no. 1, pp. 105-114, Oct. 2010.
[33]  A. Lahiri, W. Jaikla and M. Siripruchyanun, “Voltage-mode quadrature sinusoidal oscillator with current tunable properties,” Analog Integr. Circuits Process., vol. 65, no. 2, pp. 321–325, Nov. 2010.
[34] W. Jaikla, M. Siripruchyanun and A. Lahiri, “Resistorless dual-mode quadrature sinusoidal oscillator using active building block,” Microelectron. J., vol. 42, no. 1, pp. 135–140, Jan. 2011.
[35] H. C. Chien and C. Y. Chen, “CMOS realization of single-resistance- controlled and variable frequency dual-mode sinusoidal oscillator employing a single DVCCTA with all-grounded passive components,” Microelectron. J., vol. 45, no. 2, pp. 226–238, Feb. 2014.
[36] S. Siripongdee, P. Suwanjan and W. Jaikla, “Electronically tuned current- mode quadrature oscillator with independently controllable FO and CO,” 3rd European Conference of Circuits Technology and Devices (ECCTD), pp.213–216, Dec. 2012.
[37] O. Oliaei and J. Porte, “Compound current conveyor (CCII+ and CCII-),” Electronic. Lett., vol. 33, no. 4, pp. 253–254, Feb. 1997.
[38] R. Senani, D. R. Bhaskar, S. S. Gupta and V. K. Singh, “A configuration for realizing floating voltage-controlled resistance inductance and FDNC elements,” Int. J. Circuit Theory Appl., vol. 37, no. 5, pp. 709–719, Jul. 2009.
[39] S. Minaei, M. A. Ibrahim and H. Kuntman, “DVCC based current-mode first-order all-pass filter and its application,” 10th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 276–279, Dec. 2003.
[40] W. Tangsrirat and O. Channumsin, “High-input impedance voltage-mode multifunction filter using a single DDCCTA and grounded passive elements,” Radioengineering, vol. 20, no. 4, pp. 905–910, Dec. 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top