(3.238.186.43) 您好!臺灣時間:2021/02/28 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏瑋
研究生(外文):Chen, Po-Wei
論文名稱:不同型態錳氧化物去除水中抗生素安莫西林之研究
論文名稱(外文):Amoxicilline removal from water using various mineral types of manganese oxide
指導教授:官文惠官文惠引用關係
指導教授(外文):Kuan, Wen-Hui
口試委員:鄒裕民張大偉
口試委員(外文):Tzou, Yu-MinChang, Ta-Wei
口試日期:2014-01-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:131
中文關鍵詞:安莫西林錳氧化物層狀隧道狀吸附氧化
外文關鍵詞:amoxicillin(AMO)manganese oxidelayer typetunnel typeadsorptionoxidize
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
安莫西林為生活中常見的抗感染藥物,其原形及降解產物可能對環境、生物及人體造造成危害,故本研究將以抗生素 - 安莫西林為目標污染物。安莫西林屬於乙內醯胺類的抗生素,為半合成的盤尼西林製劑,殺菌效果作用強,常用於耳鼻喉感染、生殖與泌尿道感染及皮膚軟組織感染…等,為現今常使用的抗生素之一,由於需求量高,因此間接影響環境生態。天然礦物中常見錳氧化物的蹤跡,它是控制污染物在自然環境中,非生物性氧化還原最重要的礦物。由於其優異的氧化還原能力,錳氧化物也廣泛應用於催化、感測、電子與光電等工業領域。錳氧化物以四價錳離子為核心配位六個氧原子的六氧化錳八面體為基本單元,分別依邊緣平面或角落垂直的堆疊方式,形成層狀與隧道狀兩種不同的錳氧化物結晶構造。不同的結晶構造可能造就不同的活性反應位置種類與數目。因此,本研究透過合成並選用不同結構的錳氧化物進行安莫西林移除反應,實驗操作變因包括控制酸鹼值及反應時間,並探討反應機制。
實驗共選用四種錳氧化物其分別為市售隧道狀開口最小(1x1)的軟錳礦、自行於實驗室合成隧道狀開口(2x2)之摻雜鐵及氫離子的錳鉀礦及層狀的鈉水錳礦,研究結果顯示,錳氧化物-軟錳礦與安莫西林於中性(pH=7.15±0.43)的條件下反應其去除效果出色,時間經過48小時可達到87 %的去除效率。不同型態的錳氧化物對安莫西林的移除效率差異極大,普遍隧道狀較層狀構造之錳氧化物對安莫西林移除率較佳。層狀的鈉水錳礦效果最差,但於鹼性環境下,去除效率則大幅增長。合成樣品中,隧道狀且摻雜鐵離子之錳鉀礦比表面積為所有錳氧化物中之最高,實驗結果得知錳氧化物比表面積較高者,不等於去除效率最好者。由液相層析儀分析結果顯示,高價數錳氧化物軟錳礦、摻雜鐵離子之錳鉀礦及摻雜氫離子之錳鉀礦於中性(pH=7.03±0.3)環境下,從反應開始其機制依賴吸附作用,隨著時間的增長約至24小時吸附/氧化作用的比例有所改變,漸漸以氧化作用取代原先的吸附機制,且鹼性(pH=9.47±0.4)條件下進行實驗可發現其結果與中性機制相似,推測原因與實驗設計有關。酸性(pH=3.25±0.3)恰好相反,除了(Fe)於反應中,瞬間快速吸附安莫西林,其餘兩者皆是反應初始時偏向全氧化作用,隨著時間的增長依錳氧化物有所不同。鈉水錳礦屬於低價數的錳氧化物自身反應機制取向吸附作用,但反應最終落在較為極端環境下(pH=9.47±0.4),發現鈉水錳礦氧化效果十分優異,直到時間的增長pH下降趨勢才慢慢看出有吸附機制的存在。
反應機制偏向氧化作用,吸附作用為輔助,但在去除抗生素-安莫西林中兩種機制都扮演著很重要的角色缺一不可。透過液相層析串連質譜儀分析安莫西林與錳氧化物反應後之中間及最終產物,發現安莫西林的降解絕大部分由乙內醯胺環的開環開始而進一步發生脫氨及氧化機制。摻雜鐵離子之錳鉀礦及軟錳礦於安莫西林反應機制中均測得因多次氧化、脫胺基及開環之產物(質荷比=114),而氧化機制最好的摻雜鐵離子之錳鉀礦比軟錳礦多測得另一氧化產物(質荷比=229)、摻雜氫離子之錳鉀礦其氧化機制無上述兩者優異其產物,反應大部分停於差向異構化隨後脫羧基之產物(質荷比=340);相較隧道狀的錳氧化物,層狀的鈉水錳礦則氧化程度最少,只發現質荷比349之產物。

Amoxicillin is a kind of common anti-infective drug. Its original form and degradation products could be harmful for environment, organisms or human bodies. In this study, it is as a target pollutant of degradation. Amoxicillin, a semi-synthetic penicillin, belongs to β-lactam antibiotic. It is used to treat many different types of infection caused by bacteria, such as bronchitis, pneumonia, and infections of the ear, nose, throat, skin, or urinary tract. Due to its demand increases, ecology and environment are affected indirectly. Manganese oxides are commonly found in natural environments. They are also the major minerals governing the abiotic redox of pollutants in lithosphere. Because of their high potential for application and reaction selectivity manganese oxides has recently attracted considerable attention in wide ranging sectors, including catalysis, sensing, electronics, and photo-electronics. Manganese oxide structures can be divided into layered and molecular sieve (tunneled) structures depending on the basic unit of octahedral MnO6x− ions connected by the edges or vertices, respectively. Different crystalline structures could contribute varying number and type of active reaction sites. Therefore, various crystalline structures of manganese oxides were synthesized and employed as adsorbent/oxidant to investigate its reaction mechanisms with amoxicillin.
This study used four manganese oxides such as commercially available pyrolusite (tunnel 1x1), synthesized Fe-OMS-2 and H-OMS-2 (tunnel 2x2), layer type birnessite. The results show pyrolusite has the best efficiency of 87% for amoxicillin removal with reaction time of 48 hr at pH 7.15±0.43. Compared to the layered crystalline form, the tunneled manganese oxides are generally more efficient on amoxicillin removal. Layered birnessite needs in alkaline condition to increase the removal efficiency. The specific surface area value of synthetic tunneled manganese oxide Fe-OMS-2 is the highest. But, its removal efficiency is not the best. According to LC analysis result, the high valence manganese oxides—pyrolusite, Fe-OMS-2 and H-OMS-2 at pH=7.03±0.3 showed their reaction mechanisms were adsorption reaction in the beginning. After 24hr, the oxidation reaction gradually replaced adsorption reaction. The same experiment steps at pH=9.47±0.4 showed the similar result. It may be related to experiment design. Conversely, when the condition was changed to pH=3.25±0.3, only Fe-OMS-2 stayed the same result. Because of iron ion will adsorb amoxicillin quickly when reaction start. Birnessite is low valence manganese oxide which trends to adsorption mechanism by its own ability. But, while it at pH=9.47±0.4, the oxidation reaction is very obviously.
According to LC-MS/MS analysis result, oxidation mechanism dominates the amoxicillin removal with adsorption in auxiliary. Both of adsorption and oxidation mechanisms are indispensable in amoxicillin degradation removal. In addition, the mechanisms of most amoxicillin degradation by manganese oxides are beginning from ring-opening reaction followed by deamination and oxidation. A reaction product is detected repeatedly from amoxicillin degradation (ring-opening reaction, deamination and oxidation) with Fe-OMS-2 or pyrolusite. Its mass/charge ratio is 114. Then, because of Fe-OMS-2 has great oxidation ability, there is another reaction product which mass/charge ratio is 229. Amoxicillin degradation with H-OMS-2 reaction is only detected epimerization followed by decarboxylation product which mass/charge ratio is 340. Finally, only detected oxidation product of mass/charge ratio 349 was observed in the system of layered birnessite.

明志科技大學碩士學位論文指導教授推薦書...i
明志科技大學碩士學位論文口試委員審定書...ii
誌謝...iii
中文摘要...iv
Abstract...vi
目錄...viii
表目錄...xi
圖目錄...xii
第一章 前言...15
1.1 研究起源...15
1.2 研究目的...17
第二章 文獻回顧...18
2.1 抗生素...18
2.2 安莫西林來源其特性...20
2.3 廢水中抗生素之生命週期演變特性與濃度變化機制...22
2.3.1 生命週期演變特性...22
2.3.2 抗生素濃度變化機制法...23
2.4 水中抗生素之處理方願...25
2.4.1 Feton 化學氧化法...25
2.4.2 薄膜過濾法...26
2.4.3 UV/O3程序反應...27
2.5 吸附理論...29
2.6 化學動力學與熱力學...30
2.6.1 動力吸附模式...30
2.6.2 等溫吸附模式...32
2.6.3 活化能與反應焓...33
2.7 錳氧化物...36
2.7.1 錳之來源...36
2.7.2錳氧化物之種類與構造...37
2.7.3 錳氧化物之化學性質...41
2.7.4 錳氧化物之物理性質...43
2.7.5 二氧化錳去除有機物之可能機制...43
2.7.6 錳氧化物之合成與特性 45
第三章 研究方法研究流程...46
3.1 研究流程...46
3.2 實驗材料與設備...47
3.2.1 實驗之藥品...47
3.2.2 溶液配製...49
3.2.3設備與材料...50
3.2.4 分析儀器與原理...52
3.3 實驗方法...67
3.3.1 錳氧化物合成與製備...67
3.3.2 錳氧化物之基本性質分析...69
3.3.3 動力吸附實驗...69
3.3.4 Quench溶出脫附實驗之反應機制判斷...70
3.4 層析條件與檢量線...70
3.4.1 HPLC...70
3.4.2 HPLC-MS/MS...71
3.4.3 ICP...71
第四章 結果與討論 ...72
4.1 各錳氧化物之物性...72
4.1.1 XRD...72
4.1.2 界達電位...75
4.1.3 比表面積...77
4.1.4 錳氧化物之篩選...78
4.2 各錳氧化物去除水中安莫西林之反應機制...79
4.2.1 各錳氧化物氧化及吸附作用...79
4.2.2 各錳氧化物表面氧化價數改變之試驗...90
4.2.3 酸鹼值的影響...101
4.2.4 反應動力學...104
4.2.5 產物之鑑定...108
第五章 結論與建議...120
5.1 結論...120
5.2 建議...121
參考文獻...122

1.林正芳; 林郁真; 余宗賢, 新興汙染物 (抗生素與止痛藥) 於特定汙染源環境之流佈. 台北: 行政院環境保護署 2008.
2.Trovo, A. G.; Melo, S. A. S.; Nogueira, R. F. P., Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process—Application to sewage treatment plant effluent. J. Photochem. Photobiol., A: Chem. 2008, 198 (2), 215-220.
3.Mavronikola, C.; Demetriou, M.; Hapeshi, E.; Partassides, D.; Michael, C.; Mantzavinos, D.; Kassinos, D., Mineralisation of the antibiotic amoxicillin in pure and surface waters by artificial UVA- and sunlight-induced Fenton oxidation. J. Photochem. Photobiol., A: Chem. 2009, 84 (8), 1211-1217.
4.Homem, V.; Alves, A.; Santos, L., Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Sci. Total Environ. 2010, 408 (24), 6272-6280.
5.Zazouli, M.; Ulbricht, M.; Nasseri, S.; Susanto, H., Effect Of Hydrophilic And Hydrophobic Organic Matter On Amoxicillin And Cephalexin Residuals Rejection From Water By Nanofiltration. Iran. j. environ. health. sci. eng 2010, 7 (1).
6.Erik, J. R., UV advanced oxidation treatment of emerging contaminants in driking and reuse water. 2011.
7.Putra, E. K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S., Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 2009, 43 (9), 2419-2430.
8.Healy, T.; Herring, A.; Fuerstenau, D., The effect of crystal structure on the surface properties of a series of manganese dioxides. J. Colloid Interface Sci. 1966, 21 (4), 435-444.
9.Ma, J.; Li, G.; Chen, Z.; Xu, G.; Cai, G., Enhanced coagulation of surface waters with high organic content by permanganate preoxidation. Water Sci. Technol. 2001, 1 (1), 51-62.
10.Goddard, A. F.; Jessa, M. J.; Barrett, D. A.; Shaw, P. N.; Idstrom, J.; Cederberg, C.; Spiller, R. C., Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology 1996, 111 (2), 358-367.
11.Elmund, G. K.; Morrison, S.; Grant, D.; Nevins, M., Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull. Environ. Contam. Toxicol. 1971, 6 (2), 129-132.
12.Alcock, R. E.; Sweetman, A.; Jones, K. C., Assessment of organic contanhnant fate in waste water treatment plants I: Selected compounds and physicochemical properties. Chemosphere 1999, 38 (10), 2247-2262.
13.Halling-Sorensen, B., Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch. Environ. Contam. Toxicol. 2001, 40 (4), 451-460.
14.Boreen, A. L.; Arnold, W. A.; McNeill, K., Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquat sci. 2003, 65 (4), 320-341.
15.Lam, M. W.; Tantuco, K.; Mabury, S. A., PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environ. Sci. Technol. 2003, 37 (5), 899-907.
16.Boreen, A. L.; Arnold, W. A.; McNeill, K., Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 2004, 38 (14), 3933-3940.
17.Lam, M. W.; Young, C. J.; Mabury, S. A., Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ. Sci. Technol. 2005, 39 (2), 513-522.
18.Werner, J. J.; Arnold, W. A.; McNeill, K., Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environ. Sci. Technol. 2006, 40 (23), 7236-7241.
19.Zhang, H.; Huang, C. H., Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 2007, 66 (8), 1502-1512.
20.Packer, J. L.; Werner, J. J.; Latch, D. E.; McNeill, K.; Arnold, W. A., Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat sci. 2003, 65 (4), 342-351.
21.Ternes, T. A.; Joss, A.; Siegrist, H., Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38 (20), 392-399.
22.Karthikeyan, K.; Meyer, M. T., Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361 (1), 196-207.
23.Cardoza, L.; Knapp, C.; Larive, C.; Belden, J.; Lydy, M.; Graham, D., Factors affecting the fate of ciprofloxacin in aquatic field systems. Water, Air, Soil Pollut. 2005, 161 (1), 383-398.
24.Lindberg, R. H.; Olofsson, U.; Rendahl, P.; Johansson, M. I.; Tysklind, M.; Andersson, B. A. V., Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ. Sci. Technol. 2006, 40 (3), 1042-1048.
25.Herbert Jr, R. B.; Malmström, M.; Ebenå, G.; Salmon, U.; Ferrow, E.; Fuchs, M., Quantification of abiotic reaction rates in mine tailings: Evaluation of treatment methods for eliminating iron-and sulfur-oxidizing bacteria. Environ. Sci. Technol. 2005, 39 (3), 770-777.
26.Matamoros, V.; García, J.; Bayona, J. M., Behavior of selected pharmaceuticals in subsurface flow constructed wetlands: a pilot-scale study. Environ. Sci. Technol 2005, 39 (14), 5449-5454.
27.Matamoros, V.; Bayona, J. M., Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ. Sci. Technol. 2006, 40 (18), 5811-5816.
28.Huang, C.; Dong, C.; Tang, Z., Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manage. (Oxford) 1993, 13 (5), 361-377.
29.Venkatadri, R.; Peters, R. W., Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazard. Waste Hazard. Mater. 1993, 10 (2), 107-149.
30.Lipczynska-Kochany, E.; Sprah, G.; Harms, S., Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 1995, 30 (1), 9-20.
31.Snyder, S. A.; Westerhoff, P.; Yoon, Y.; Sedlak, D. L., Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 2003, 20 (5), 449-469.
32.Asano, T., Wastewater reclamation and reuse. Journal (Water Pollution Control Federation) 1988, 854-856.
33.Heberer, T., Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters 2002, 131 (1), 5-17.
34.林郁真, 新興污染物對環境之污染現況及研究進展. 台大工程(Bulletin of the College of Engineering/National Taiwan University) 2007, 96, 73-82.
35.Rice, R. G. In Ozone for the treatment of hazardous materials. AlChE Symp. Ser. 1981.
36.Chang, H.; Chen, C.; Chang, H., Study on the functional properties of swine hemoglobin decolored with ozone. Food Sci.(Taiwan) 1996, 23, 529-537.
37.Kusakabe, K.; Aso, S.; Hayashi, J. I.; Isomura, K.; Morooka, S., Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with UV irradiation. Water Res. 1990, 24 (6), 781-785.
38.Chang, C. N.; Ma, Y. S.; Zing, F. F., Reducing the formation of disinfection by-products by pre-ozonation. Chemosphere 2002, 46 (1), 21-30.
39.Amy, G. L.; Tan, L.; Davis, M. K., The effects of ozonation and activated carbon adsorption on trihalomethane speciation. Water Res. 1991, 25 (2), 191-202.
40.Qiang, Z.; Macauley, J. J.; Mormile, M. R.; Surampalli, R.; Adams, C. D., Treatment of antibiotics and antibiotic resistant bacteria in swine wastewater with free chlorine. J. Agric. Food. Chem. 2006, 54 (21), 8144-8154.
41.Huber, M. M.; GObel, A.; Joss, A.; Hermann, N.; LOffler, D.; McArdell, C. S.; Ried, A.; Siegrist, H.; Ternes, T. A.; von Gunten, U., Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ. Sci. Technol. 2005, 39 (11), 4290-4299.
42.Pinkston, K. E.; Sedlak, D. L., Transformation of aromatic ether-and amine-containing pharmaceuticals during chlorine disinfection. Environ. Sci. Technol. 2004, 38 (14), 4019-4025.
43. Gregg, S.; Sing, K. S. W., Adsorption, Surface Area, and Porosity. 1983.
44. Ruthven, D. M., Principles of adsorption and adsorption processes. 1984.
45.黃富昌, 土壤結構及化性對有機污染物吸/脫附性之研究. 國立中央大學環境工程研究所, 桃園縣. 2004.
46.Arrhenius, S., On the influence of carbonic acid in the air upon the temperature of the ground. 1987.
47.Mc Kenzie, R. M., Reactions controlling heavy metal solubility in soils. Advances in soil science , Springer: 1989; pp 1-56.
48.王明光, 土壤環境礦物學. 台北, 台灣: 藝軒出版社 2000.
49.Morgan, J. J.; Stumm, W., Colloid-chemical properties of manganese dioxide. J. of colloid sci. 1964, 19 (4), 347-359.
50.Posselt, H. S.; Anderson, F. J.; Weber, W. J., Cation sorption on colloidal hydrous manganese dioxide. Environ. Sci. Technol. 1968, 2 (12), 1087-1093.
51.Driehaus, W.; Seith, R.; Jekel, M., Oxidation of arsenate (III) with manganese oxides in water treatment. Water Res. 1995, 29 (1), 297-305.
52.VanLoon, G. W.; Duffy, S. J., Environmental chemistry: a global perspective. Oxford University Press Oxford, UK 2000, 492.
53.Stumm, W.; Morgan, J., Aquatic chemistry and introduction emphasizing chemical equilibria in natural waters. New York, John Wiley & Sons. 780p: 1981.
54.吳榮宗, 工業觸媒概論. 國興出版社 1998.
55.Perez-Benito, J. F.; Arias, C., A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid. J. Colloid Interface Sci. 1992, 149 (1), 92-97.
56.Perez-Benito, J. F.; Arias, C., Occurrence of colloidal manganese dioxide in permanganate reactions. J. Colloid Interface Sci. 1992, 152 (1), 70-84.
57.彭惠君, 高錳酸鉀對水中有機物去除機制之研究. 國立成功大學環境工程學系碩博士班, 台南市 2002.
58.White, D.; Asfar-Siddique, A., Removal of manganese and iron from drinking water using hydrous manganese dioxide. Solvent Extr. Ion Exch. 1997, 15 (6), 1133-1145.
59.Colthurst, J. M.; Singer, P. C., Removing trihalomethane precursors by permanganate oxidation and manganese dioxide adsorption. Journal (American Water Works Association) 1982, 78-83.
60.Huang, H.; Sithambaram, S.; Chen, C. H.; King’ondu Kithongo, C.; Xu, L.; Iyer, A.; Garces, H. F.; Suib, S. L., Microwave-Assisted Hydrothermal Synthesis of Cryptomelane-Type Octahedral Molecular Sieves (OMS-2) and Their Catalytic Studies. Chem. Mater. 2010, 22 (12), 3664-3669.
61.Iyer, A.; Galindo, H.; Sithambaram, S.; King'ondu, C.; Chen, C. H.; Suib, S. L., Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Appl. Catal., A: General 2010, 375 (2), 295-302.
62.Guiqiang, D.; Lin, Y.; Qian, Y.; Ming, S.; Zhifeng, H.; Fangqiang, F.; Fei, M., Research Progress in the Layered Birnessite-type Manganese Oxide. Guangdong Chemical Industry 2008, 35 (1), 59.
63.劉柄伸, 利用錳氧化物去除水中抗生素安莫西林之研究. 明志科技大學生化工程研究所, 台北縣 2011.
64.蕭翔懌, 比較不同晶型錳氧化物對三價砷及五價砷去除特性之研究. 明志科技大學生化工程研究所, 台北縣 2010.
65.Makwana, V. D.; Son, Y. C.; Howell, A. R.; Suib, S. L., The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: A kinetic and isotope-labeling study. J. Catal. 2002, 210 (1), 46-52.
66.Ghosh, R.; Shen, X.; Villegas, J. C.; Ding, Y.; Malinger, K.; Suib, S. L., Role of manganese oxide octahedral molecular sieves in styrene epoxidation. J. Phys. Chem. B 2006, 110 (14), 7592-7599.
67.Sriskandakumar, T.; Opembe, N.; Chen, C. H.; Morey, A.; King’ondu, C.; Suib, S. L., Green Decomposition of Organic Dyes Using Octahedral Molecular Sieve Manganese Oxide Catalysts. J. Phys. Chem. A 2009, 113 (8), 1523-1530.
68.Rodriguez, R. New method for determination of β-lactam antibiotics by means of Diffuse Reflectance Spectroscopy using polyurethane foam as sorbent. Universität Duisburg-Essen, Fakultät für Chemie, 2005.
69.Elmolla, E. S.; Chaudhuri, M., Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 2010, 256 (1-3), 43-47.
70.Xia, G. G.; Tong, W.; Tolentino, E. N.; Duan, N. G.; Brock, S. L.; Wang, J. Y.; Suib, S. L.; Ressler, T., Synthesis and characterization of nanofibrous sodium manganese oxide with a 2× 4 tunnel structure. Chem. Mater. 2001, 13 (5), 1585-1592.
71.Rubert IV, K. F.; Pedersen, J. A., Kinetics of oxytetracycline reaction with a hydrous manganese oxide. Environ. Sci. Technol. 2006, 40 (23), 7216-7221.
72.Wang, Y.; Feng, X.; Villalobos, M.; Tan, W.; Liu, F., Sorption behavior of heavy metals on birnessite: relationship with its Mn average oxidation state and implications for types of sorption sites. Chem. Geol 2012, 292, 25-34.
73.Ho, Y.-S.; McKay, G., Pseudo-second order model for sorption processes. Process Biochem. 1999, 34 (5), 451-465.
74.Chan, Y. T.; Kuan, W. H.; Chen, T. Y.; Wang, M. K., Adsorption mechanism of selenate and selenite on the binary oxide systems. Water Res. 2009, 43 (17), 4412-4420.
75.Perez-Parada, A.; Aguera, A.; Gomez-Ramos, M. D.; Garcia-Reyes, J. F.; Heinzen, H.; Fernandez-Alba, A. R., Behavior of amoxicillin in wastewater and river water: identification of its main transformation products by liquid chromatography/electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25 (6), 731-742.
76.Nagele, E.; Moritz, R., Structure Elucidation of Degradation Products of the Antibiotic Amoxicillin with Ion Trap MS< sup> n and Accurate Mass Determination by ESI TOF. J. Am. Soc. Mass. Spectrom 2005, 16 (10), 1670-1676.
77.Bailon-Perez, M. I.; Garcia-Campana, A. M.; Iruela, M. D.; Cruces-Blanco, C.; Gracia, L. G., Multiresidue determination of penicillins in environmental waters and chicken muscle samples by means of capillary electrophoresis-tandem mass spectrometry. Electrophoresis 2009, 30 (10), 1708-1717.
78.Andreozzi, R.; Canterino, M.; Marotta, R.; Paxeus, N., Antibiotic removal from wastewaters: The ozonation of amoxicillin. J. Hazard. Mater. 2005, 122 (3), 243-250.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔