跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖崇彣
研究生(外文):Chung Wen Laio
論文名稱:都會區交通污染源黑碳的質量粒徑分佈特徵探討
論文名稱(外文):Characteristics of Black Carbon Mass Size Distributions at a Traffic Site in Taipei Metropolitan Area
指導教授:程裕祥程裕祥引用關係
指導教授(外文):Yu Hsiang Cheng
口試委員:劉禎淑林煜棋
口試委員(外文):Zhen Shu LiuYu Chi Lin
口試日期:2015-07-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:黑碳粒徑分離質量粒徑分布台北都會區
外文關鍵詞:Black carbonSize segregationMass size distributionTaipei urban area
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
由於黑碳微粒對氣候、能見度和人體健康的影響主要取決於黑碳微粒的粒徑分佈,因此了解黑碳在不同環境下的粒徑分佈特徵是極為重要的議題。在本研究中,開發了一種新的方法,用於測量黑碳在大氣微粒中的質量粒徑分佈。這個粒徑分離的方法是同時利用兩部黑碳分析儀 (aethalometer) 進行環境中黑碳質量濃度的並行測量,其中一部黑碳分析儀是用於測量環境中的總碳黑 (BCT) 質量濃度,而另一部黑碳分析儀則在採樣入口裝置特定截取直徑的粒徑篩選器用以測量低於某特定粒徑的黑碳 (BCi) 質量濃度。在本研究中,此方法用於測量都市交通源大氣中的黑碳質量濃度。採樣時間是從2012年12月15日至2013年1月31日和2013年2月15日至2013年3月31日。測量結果可進一步探討黑碳質量濃度在晝夜的變化趨勢、黑碳質量濃度的平均濃度、黑碳質量濃度在不同粒徑的質量分率以及黑碳微粒的質量粒徑分佈。結果呈現,在台北都會區黑碳總質量濃度約為2.8 μg m-3。在這個採樣點的黑碳濃度顯著地受到交通排放量和當地風速的影響。在此採樣位置的平均BC2.5/BCT、BC1.0/BCT、BC0.5/BCT、BC0.25/BCT和BC0.1/BCT 分別為 0.96 ± 0.04、0.92 ± 0.07、0.89 ± 0.04、0.73 ± 0.10和 0.18 ± 0.08。該結果說明,約有90% 的黑碳微粒小於0.5 μm,大部分的碳黑微粒 (55%) 尺寸大小範圍介於0.1-0.25μm,約有18% 的黑碳微粒是在超細微粒範疇。此外,在這個採樣點的黑碳日平均質量粒徑分佈則呈現單一的積累峰態,其眾數直徑約在0.16 μm。在交通尖峰時段 (上午9點) 的黑碳質量粒徑分佈眾數直徑約為0.14 μm,此時的眾數直徑比日平均值小。此外,在清晨時段 (上午3點) 的黑碳質量粒徑分佈眾數直徑約為0.18 μm,同時在此期間也觀察到一個較微小的粗粒徑峰態。該結果進一步顯示,在採樣期間黑碳微粒的幾何平均直徑 (Dpg) 約在0.14和0.22 μm之間,這些黑碳微粒的幾何標準偏差 (σg) 變化範圍約為1.4〜2.3。由於黑碳呈現極低的化學反應性,因此黑碳在大氣中的粒徑分佈變動性不大,除非透過微粒的膠結程序。
Understanding the characteristics of the size distribution of ambient black carbon (BC) in distinct environments is critical because the influence of BC aerosols on climate, visibility, and human health depends strongly on the distribution of BC aerosols over the particle size spectrum. In this study, a novel method for determining the mass size distribution of BC in atmospheric aerosols was developed. This size-segregation method relies on measuring BC in parallel using two aethalometers, one of which is used to measure the total BC (BCT) mass concentration as a reference level and the other is used to measure the BC (BCi) mass concentration for BC sizes below specific particle sizes that are selected using a size cut-off inlet. In this study, this method was applied to measure BC in atmospheric samples at an urban traffic site. The aethalometers were operated continually from December 15, 2012 to January 31, 2013, and from February 15, 2013 to March 31, 2013. The measurement results presented in this paper are for the diurnal variation patterns, average concentrations, mass fractions, and size distributions of BC aerosols. The results indicate that BCT mass concentration is approximately 2.8 μg m-3 in the Taipei urban area. The levels of BC at this sampling site were affected markedly by traffic emission levels and local wind speed. At the sampling site, the average BC2.5/BCT, BC1.0/BCT, BC0.5/BCT, BC0.25/BCT, and BC0.1/BCT were 0.96 ± 0.04, 0.92 ± 0.07, 0.89 ± 0.04, 0.73 ± 0.10, and 0.18 ± 0.08, respectively. The results indicate that approximately 90% of the BC aerosols were smaller than 0.5 μm, that most of the BC aerosols (55%) were in the size range of 0.1–0.25 μm, and that approximately 18% of the BC aerosols were ultrafine. Moreover, the daily average mass size distribution of BC exhibited a single accumulation mode at 0.16 μm at this sampling site. The mode of the BC mass size distribution at rush hour (9 AM) was only 0.14 μm, which is smaller than the daily average. Moreover, the mode of the BC mass size distribution at an early morning hour (3 AM) was 0.18 μm, and a minor coarse mode was also observed during this period. The results further revealed that the geometric diameter (Dpg) of the BC aerosols varied between 0.14 and 0.22 μm and the geometric standard deviation (σg) of these BC aerosols ranged between 1.4 and 2.3 during the sampling period. Because BC exhibits extremely low chemical reactivity; the size distribution of BC in the atmosphere does not change substantially except through coagulation.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
誌謝 iii
中文摘要 v
西文摘要 vii
目錄 ix
表目錄 xi
圖目錄 xii
第一章、前言 1
1.1 研究起源 1
1.2 研究目的 2
第二章、文獻回顧 3
2.1 黑碳的定義與來源 3
2.2 黑碳對人體健康的影響 6
2.3 黑碳對氣候的影響 9
2.4 黑碳的測量方法 12
2.5 國內外交通源的黑碳濃度及其粒徑分布 14
第三章、研究方法 17
3.1 黑碳質量濃度的測量原理 17
3.2 黑碳微粒粒徑分佈測量 21
3.3 測量地點與時間 25
3.4 黑碳質量濃度測量的校正 26
第四章、結果與討論 28
4.1 兩部黑碳分析儀的性能比較結果 28
4.2 都會區交通污染源黑碳質量濃度分布狀況 29
4.3 氣候條件風速與風向對黑碳質量濃度的影響 32
4.4 平日、週六與週日黑碳質量濃度24小時變化特徵 34
4.5 不同粒徑黑碳質量濃度與總黑碳質量濃度的比例關係 37
4.6 黑碳微粒的質量粒徑分佈 39
4.7 平日、週六與週日黑碳微粒質量粒徑分布小時變化特徵 42
第五章、結論 45
參考文獻 46
Ackermann-Liebrich, U.; Leuenberger, P.; Schwartz, J.; Schindler, C.; Monn, C.; Bolognini, G.; Bongard, J.; Brändli, O.; Domenighetti, G.; Elsasser, S., Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Resp Crit Care. 1997, 155 (1), 122-129
Arnott, W. P.; Hamasha, K.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A., Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci Tech. 2005, 39 (1), 17-29
Babu, S. S.; Satheesh, S.; Moorthy, K. K., Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett. 2002, 29 (18), 27-1-27-4
Ball, J. C.; Young, W. C., Evidence for a new class of mutagens in diesel particulate extracts. Environ Sci Technol. 1992, 26 (11), 2181-2186
Beegum, S. N.; Moorthy, K. K.; Babu, S. S.; Satheesh, S.; Vinoj, V.; Badarinath, K.; Safai, P.; Devara, P.; Singh, S.; Dumka, U., Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos Environ. 2009, 43 (5), 1071-1078
Beelen, R.; Hoek, G.; van Den Brandt, P. A.; Goldbohm, R. A.; Fischer, P.; Schouten, L. J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B., Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Persp. 2008, 116 (2), 196-202
Begum, B. A.; Hossain, A.; Nahar, N.; Markwitz, A.; Hopke, P. K., Organic and black carbon in PM2. 5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual Res. 2012, 12 (6), 1062-1072
Bergin, M.; Greenwald, R.; Xu, J.; Berta, Y.; Chameides, W., Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze delta region of China. Geophys Res Lett. 2001, 28 (18), 3605-3608
Bond, T. C.; Bergstrom, R. W., Light absorption by carbonaceous particles: An investigative review. Aerosol Sci Tech. 2006, 40 (1), 27-67
Bond, T. C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.; Roden, C.; Streets, D. G.; Trautmann, N. M., Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Global Biogeochem Cy. 2007, 21 (2)
Bond, T. C.; Doherty, S. J.; Fahey, D.; Forster, P.; Berntsen, T.; DeAngelo, B.; Flanner, M.; Ghan, S.; Kärcher, B.; Koch, D., Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res-Atmos. 2013, 118 (11), 5380-5552
Boogaard, H.; Kos, G. P.; Weijers, E. P.; Janssen, N. A.; Fischer, P. H.; van der Zee, S. C.; de Hartog, J. J.; Hoek, G., Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos Environ. 2011, 45 (3), 650-658
Brauer, M.; Hoek, G.; Van Vliet, P.; Meliefste, K.; Fischer, P. H.; Wijga, A.; Koopman, L. P.; Neijens, H. J.; Gerritsen, J.; Kerkhof, M., Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Resp Crit Care. 2002, 166 (8), 1092-1098
Brunekreef, B.; Holgate, S. T., Air pollution and health. The lancet 2002, 360 (9341), 1233-1242
Cao, J.-J.; Zhu, C.-S.; Chow, J. C.; Watson, J. G.; Han, Y.-M.; Wang, G.-h.; Shen, Z.-x.; An, Z.-S., Black carbon relationships with emissions and meteorology in Xi'an, China. Atmos Res. 2009, 94 (2), 194-202
Castanho, A. D.; Artaxo, P., Wintertime and summertime São Paulo aerosol source apportionment study. Atmos Environ. 2001, 35 (29), 4889-4902
Chameides, W.; Xingsheng, L.; Xiaoyan, T.; Xiuji, Z.; Luo, C.; Kiang, C.; St John, J.; Saylor, R.; Liu, S.; Lam, K., Is ozone pollution affecting crop yields in China? Geophys Res Lett. 1999, 26 (7), 867-870
Change, I. P. O. C., Climate change 2007: The physical science basis. Agenda 2007, 6 (07), 333
Cheng, Y.-H.; Lin, M.-H., Real-time performance of the microAeth® AE51 and the effects of aerosol loading on its measurement results at a traffic site. Aerosol Air Qual Res. 2013, 13 (6), 1853-1863
Cheng, Y.-H.; Shiu, B.-T.; Lin, M.-H.; Yan, J.-W., Levels of black carbon and their relationship with particle number levels—observation at an urban roadside in Taipei City. Environ Sci Pollut R. 2013, 20 (3), 1537-1545
Chow, J. C.; Watson, J. G.; Doraiswamy, P.; Chen, L.-W. A.; Sodeman, D. A.; Lowenthal, D. H.; Park, K.; Arnott, W. P.; Motallebi, N., Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmos Res. 2009, 93 (4), 874-887
Cooke, W. F.; Wilson, J. J., A global black carbon aerosol model. J Geophys Res-Atmos. (1984–2012) 1996, 101 (D14), 19395-19409
Cornell, A. G.; Chillrud, S. N.; Mellins, R. B.; Acosta, L. M.; Miller, R. L.; Quinn, J. W.; Yan, B.; Divjan, A.; Olmedo, O. E.; Lopez-Pintado, S., Domestic airborne black carbon and exhaled nitric oxide in children in NYC. J Expo Sci Env Epid. 2012, 22 (3), 258-266
Cuccia, E.; Massabò, D.; Ariola, V.; Bove, M.; Fermo, P.; Piazzalunga, A.; Prati, P., Size-resolved comprehensive characterization of airborne particulate matter. Atmos Environ. 2013, 67, 14-26
Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris Jr, B. G.; Speizer, F. E., An association between air pollution and mortality in six US cities. New Engl J Med. 1993, 329 (24), 1753-1759
Dominici, F.; Peng, R. D.; Bell, M. L.; Pham, L.; McDermott, A.; Zeger, S. L.; Samet, J. M., Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama 2006, 295 (10), 1127-1134
Dutkiewicz, V. A.; Alvi, S.; Ghauri, B. M.; Choudhary, M. I.; Husain, L., Black carbon aerosols in urban air in South Asia. Atmos Environ. 2009, 43 (10), 1737-1744
Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P., Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmos Environ. 2008, 42 (2), 207-219
Hagler, G. S.; Yelverton, T. L.; Vedantham, R.; Hansen, A. D.; Turner, J. R., Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol Air Qual Res. 2011, 11 (5), 539-546
Hansen, A.; Rosen, H.; Novakov, T., The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ. 1984, 36, 191-196
He, K.; Yang, F.; Ma, Y.; Zhang, Q.; Yao, X.; Chan, C. K.; Cadle, S.; Chan, T.; Mulawa, P., The characteristics of PM 2.5 in Beijing, China. Atmos Environ. 2001, 35 (29), 4959-4970
Heinrich, U.; Dungworth, D.; Pott, F.; Peters, L.; Dasenbrock, C.; Levsen, K.; Koch, W.; Creutzenberg, O.; Schulte, A., The Carcinogenic Effects of Carbon Black Particles and Tar–Pitch Condensation Aerosol after Inhalation Exposure of Rats. Ann Occup Hyg. 1994, 38 (inhaled particles VII), 351-356
Hitzenberger, R.; Tohno, S., Comparison of black carbon (BC) aerosols in two urban areas–concentrations and size distributions. Atmos Environ. 2001, 35 (12), 2153-2167
Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P. A., Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. The lancet 2002, 360 (9341), 1203-1209
Horvath, H., Comparison of measurements of aerosol optical absorption by filter collection and a transmissometric method. Atmos Environ.. Part A. General Topics 1993, 27 (3), 319-325
Husain, L.; Dutkiewicz, V. A.; Khan, A.; Ghauri, B. M., Characterization of carbonaceous aerosols in urban air. Atmos Environ. 2007, 41 (32), 6872-6883
Hyvärinen, A.-P.; Kolmonen, P.; Kerminen, V.-M.; Virkkula, A.; Leskinen, A.; Komppula, M.; Hatakka, J.; Burkhart, J.; Stohl, A.; Aalto, P., Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmos Environ. 2011, 45 (24), 4042-4050
Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D., Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos Environ. 2011, 45 (21), 3522-3527
Jacobson, M. Z., Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409 (6821), 695-697
Jacobson, M. Z., Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res-Atmos. (1984–2012) 2002, 107 (D19), ACH 16-1-ACH 16-22
Jacobson, M. Z., Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity. J Geophys Res-Atmos. (1984–2012) 2004, 109 (D21)
Jacobson, M. Z., Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res-Atmos. (1984–2012) 2010, 115 (D14)
Järvi, L.; Junninen, H.; Karppinen, A.; Hillamo, R.; Virkkula, A.; Mäkelä, T.; Pakkanen, T.; Kulmala, M., Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmos Chem Phys. 2008, 8 (4), 1017-1027
Jung, K. H.; Patel, M. M.; Moors, K.; Kinney, P. L.; Chillrud, S. N.; Whyatt, R.; Hoepner, L.; Garfinkel, R.; Yan, B.; Ross, J., Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort. Atmos Environ. 2010, 44 (36), 4545-4552
Junker, C.; Liousse, C., A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys. 2008, 8 (5), 1195-1207
Kaiser, J.; Riemer, N.; Knopf, D., Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model. Atmos Chem Phys. 2011, 11 (9), 4505-4520
Kerminen, V.-M.; Pakkanen, T. A.; Hillamo, R. E., Interactions between inorganic trace gases and supermicrometer particles at a coastal site. Atmos Environ. 1997, 31 (17), 2753-2765
Kim, H.-S.; Huh, J.-B.; Hopke, P. K.; Holsen, T. M.; Yi, S.-M., Characteristics of the major chemical constituents of PM 2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ. 2007, 41 (32), 6762-6770
Kim, K. H.; Sekiguchi, K.; Kudo, S.; Sakamoto, K., Characteristics of Atmospheric Elemental Carbon(Char and Soot) in Ultrafine and Fine Particles in a Roadside Environment, Japan. Aerosol Air Qual Res. 2011, 11 (1), 1-12
Kittelson, D. B., Engines and nanoparticles: a review. J Aerosol Sci. 1998, 29 (5), 575-588
Kondo, Y.; Sahu, L.; Moteki, N.; Khan, F.; Takegawa, N.; Liu, X.; Koike, M.; Miyakawa, T., Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci Tech. 2011, 45 (2), 295-312
Latha, K. M.; Badarinath, K.; Krishna Moorthy, K., Impact of diesel vehicular emissions on ambient black carbon concentration at an urban location in India. Current Science 2004, 86 (3), 451-453
Laumbach, R. J.; Kipen, H. M., Acute effects of motor vehicle traffic‐related air pollution exposures on measures of oxidative stress in human airways. Ann NY Acad Sci. 2010, 1203 (1), 107-112
Lavanchy, V.; Gäggeler, H.; Nyeki, S.; Baltensperger, U., Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ. 1999, 33 (17), 2759-2769
Lighty, J. S.; Veranth, J. M.; Sarofim, A. F., Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste MA. 2000, 50 (9), 1565-1618
Liousse, C.; Galy-Lacaux, C.; Ndiaye, S. A.; Diop, B.; Ouafo, M.; Assamoi, E. M.; Gardrat, E.; Castera, P.; Rosset, R.; Akpo, A., Real time black carbon measurements in West and Central Africa urban sites. Atmos Environ. 2012, 54, 529-537
Mallet, M.; Roger, J.; Despiau, S.; Dubovik, O.; Putaud, J., Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos Res. 2003, 69 (1), 73-97
Mayol‐Bracero, O.; Guyon, P.; Graham, B.; Roberts, G.; Andreae, M.; Decesari, S.; Facchini, M.; Fuzzi, S.; Artaxo, P., Water‐soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res-Atmos. (1984–2012) 2002, 107 (D20), LBA 59-1-LBA 59-15
Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y., Climate effects of black carbon aerosols in China and India. Science 2002, 297 (5590), 2250-2253
Migliore, E.; Berti, G.; Galassi, C.; Pearce, N.; Forastiere, F.; Calabrese, R.; Armenio, L.; Biggeri, A.; Bisanti, L.; Bugiani, M., Respiratory symptoms in children living near busy roads and their relationship to vehicular traffic: results of an Italian multicenter study (SIDRIA 2). Environmental Health 2009, 8 (1), 27
Morawska, L.; Thomas, S.; Bofinger, N.; Wainwright, D.; Neale, D., Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants. Atmos Environ. 1998, 32 (14), 2467-2478
Ning, Z.; Chan, K.; Wong, K.; Westerdahl, D.; Močnik, G.; Zhou, J.; Cheung, C., Black carbon mass size distributions of diesel exhaust and urban aerosols measured using differential mobility analyzer in tandem with Aethalometer. Atmos Environ. 2013, 80, 31-40
Pakkanen, T. A.; Kerminen, V.-M.; Ojanen, C. H.; Hillamo, R. E.; Aarnio, P.; Koskentalo, T., Atmospheric black carbon in Helsinki. Atmos Environ. 2000, 34 (9), 1497-1506
Park, K.; Chow, J. C.; Watson, J. G.; Trimble, D. L.; Doraiswamy, P.; Park, K.; Arnott, W. P.; Stroud, K. R.; Bowers, K.; Bode, R., Comparison of continuous and filter-based carbon measurements at the Fresno Supersite. J Air Waste MA. 2006, 56 (4), 474-491
Park, S. S.; Hansen, A. D.; Cho, S. Y., Measurement of real time black carbon for investigating spot loading effects of Aethalometer data. Atmos Environ. 2010, 44 (11), 1449-1455
Park, S. S.; Kim, Y. J.; Fung, K., PM 2.5 carbon measurements in two urban areas: Seoul and Kwangju, Korea. Atmos Environ. 2002, 36 (8), 1287-1297
Penner, J.; Eddleman, H.; Novakov, T., Towards the development of a global inventory for black carbon emissions. Atmos Environ.. Part A. General Topics 1993, 27 (8), 1277-1295
Pereira, S. N.; Wagner, F.; Silva, A. M., Long term black carbon measurements in the southwestern Iberia Peninsula. Atmos Environ. 2012, 57, 63-71
Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M., Variability of particle number, black carbon, and PM10, PM2. 5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Sci Tech. 2010, 44 (7), 487-499
Peters, A.; Wichmann, H. E.; Tuch, T.; Heinrich, J.; Heyder, J., Respiratory effects are associated with the number of ultrafine particles. Am J Resp Crit Care. 1997, 155 (4), 1376-1383
Petzold, A.; Ogren, J.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N., Recommendations for reporting" black carbon" measurements. Atmos Chem Phys. 2013, 13 (16), 8365-8379
Pope, C. A.; Burnett, R. T.; Thurston, G. D.; Thun, M. J.; Calle, E. E.; Krewski, D.; Godleski, J. J., Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109 (1), 71-77
Pope III, C. A.; Dockery, D. W., Health effects of fine particulate air pollution: lines that connect. J Air Waste MA. 2006, 56 (6), 709-742
Power, M. C.; Weisskopf, M. G.; Alexeeff, S. E.; Coull, B. A.; Spin III, A.; Schwartz, J., Traffic-related air pollution and cognitive function in a cohort of older men. Environ Health Persp. 2011, 119 (5), 682
Quinn, P.; Bates, T.; Baum, E.; Doubleday, N.; Fiore, A.; Flanner, M.; Fridlind, A.; Garrett, T.; Koch, D.; Menon, S., Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmos Chem Phys. 2008, 8 (6), 1723-1735
Ramachandran, S.; Kedia, S., Black carbon aerosols over an urban region: radiative forcing and climate impact. J Geophys Res-Atmos. (1984–2012) 2010, 115 (D10)
Ramachandran, S.; Rajesh, T., Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. J Geophys Res-Atmos. (1984–2012) 2007, 112 (D6)
Ramanathan, V.; Carmichael, G., Global and regional climate changes due to black carbon. Nat Geosci. 2008, 1 (4), 221-227
Ramanathan, V.; Ramana, M. V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D., Warming trends in Asia amplified by brown cloud solar absorption. Nature 2007, 448 (7153), 575-578
Rattigan, O. V.; Civerolo, K.; Doraiswamy, P.; Felton, H. D.; Hopke, P. K., Long term black carbon measurements at two urban locations in New York. Aerosol Air Qual Res. 2013, 13 (4), 1181-1196+ 1
Reche, C.; Querol, X.; Alastuey Urós, J. A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez Sánchez, S.; González, Y.; Fernández Camacho, R.; Sánchez de la Campa Verdona, A. M., Variability of levels of PM, black carbon and particle number concentration in selected European cities. 2011
Reddy, B. S. K.; Kumar, K. R.; Balakrishnaiah, G.; Gopal, K. R.; Reddy, R.; Reddy, L.; Ahammed, Y. N.; Narasimhulu, K.; Moorthy, K. K.; Babu, S. S., Potential source regions contributing to seasonal variations of black carbon aerosols over Anantapur in Southeast India. Aerosol Air Qual Res. 2012, 12, 344
Rodríguez, S.; Cuevas, E.; González, Y.; Ramos, R.; Romero, P. M.; Pérez, N.; Querol, X.; Alastuey, A., Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2. 5 and PM2. 5–10 concentrations in a coastal city. Atmos Environ. 2008, 42 (26), 6523-6534
Rosenlund, M.; Forastiere, F.; Porta, D.; De Sario, M.; Badaloni, C.; Perucci, C. A., Traffic-related air pollution in relation to respiratory symptoms, allergic sensitisation and lung function in schoolchildren. Thorax 2009, 64 (7), 573-580
Rosenthal, E.; Watson, R., Multilateral Efforts to Reduce Black Carbon Emissions: A Lifeline for the Warming Arctic? Review of European Community & International Environmental Law 2011, 20 (1), 3-10
Rückerl, R.; Phipps, R. P.; Schneider, A.; Frampton, M.; Cyrys, J.; Oberdörster, G.; Wichmann, H. E.; Peters, A., Ultrafine particles and platelet activation in patients with coronary heart disease—results from a prospective panel study. Part Fibre Toxicol 2007, 4 (1), 1743-8977
Safai, P.; Kewat, S.; Praveen, P.; Rao, P.; Momin, G.; Ali, K.; Devara, P., Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos Environ. 2007, 41 (13), 2699-2709
Salako, G. O.; Hopke, P. K.; Cohen, D. D.; Begum, B. A.; Biswas, S. K.; Pandit, G. G.; Chung, Y.-S.; Rahman, S. A.; Hamzah, M. S.; Davy, P., Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual Res. 2012, 12 (1), 1-7
Salvi, S.; Holgate, S., Mechanisms of particulate matter toxicity. Clin Exp Allergy. 1999, 29 (9), 1187-1194
Sandradewi, J.; Prevot, A. S.; Szidat, S.; Perron, N.; Alfarra, M. R.; Lanz, V. A.; Weingartner, E.; Baltensperger, U., Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol. 2008, 42 (9), 3316-3323
Schmid, O.; Artaxo, P.; Arnott, W.; Chand, D.; Gatti, L.; Frank, G.; Hoffer, A.; Schnaiter, M.; Andreae, M., Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos Chem Phys. 2006, 6 (11), 3443-3462
Schulz, H.; Harder, V.; Ibald-Mulli, A.; Khandoga, A.; Koenig, W.; Krombach, F.; Radykewicz, R.; Stampfl, A.; Thorand, B.; Peters, A., Cardiovascular effects of fine and ultrafine particles. Journal of aerosol medicine 2005, 18 (1), 1-22
Schulz, M.; Textor, C.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Dentener, F.; Guibert, S., Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos Chem Phys. 2006, 6 (12), 5225-5246
Schwartz, J., Particulate air pollution and chronic respiratory disease. Environ Res. 1993, 62 (1), 7-13
Schwarz, J.; Gao, R.; Fahey, D.; Thomson, D.; Watts, L.; Wilson, J.; Reeves, J.; Darbeheshti, M.; Baumgardner, D.; Kok, G., Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere. J Geophys Res-Atmos. (1984–2012) 2006, 111 (D16)
Schwarz, J.; Gao, R.; Spackman, J.; Watts, L.; Thomson, D.; Fahey, D.; Ryerson, T.; Peischl, J.; Holloway, J.; Trainer, M., Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys Res Lett. 2008, 35 (13)
Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K., Particulate air pollution and acute health effects. The Lancet 1995, 345 (8943), 176-178
Sharma, R.; Bhattarai, B.; Sapkota, B.; Gewali, M.; Kjeldstad, B., Black carbon aerosols variation in Kathmandu valley, Nepal. Atmos Environ. 2012, 63, 282-288
Shiraiwa, M.; Kondo, Y.; Moteki, N.; Takegawa, N.; Sahu, L.; Takami, A.; Hatakeyama, S.; Yonemura, S.; Blake, D., Radiative impact of mixing state of black carbon aerosol in Asian outflow. J Geophys Res-Atmos. (1984–2012) 2008, 113 (D24)
Snyder, D. C.; Rutter, A. P.; Worley, C.; Olson, M.; Plourde, A.; Bader, R. C.; Dallmann, T.; Schauer, J. J., Spatial variability of carbonaceous aerosols and associated source tracers in two cites in the Midwestern United States. Atmos Environ. 2010, 44 (13), 1597-1608
Suglia, S. F.; Gryparis, A.; Wright, R.; Schwartz, J.; Wright, R., Association of black carbon with cognition among children in a prospective birth cohort study. AM J Epidemiol. 2008, 167 (3), 280-286
Tripathi, S.; Dey, S.; Tare, V.; Satheesh, S., Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett. 2005, 32 (8)
Tsai, C.-J.; Liu, C.-N.; Hung, S.-M.; Chen, S.-C.; Uang, S.-N.; Cheng, Y.-S.; Zhou, Y., Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol. 2012, 46 (8), 4546-4552
Van Roosbroeck, S.; Li, R.; Hoek, G.; Lebret, E.; Brunekreef, B.; Spiegelman, D., Traffic-related outdoor air pollution and respiratory symptoms in children: the impact of adjustment for exposure measurement error. Epidemiology 2008, 19 (3), 409-416
Verma, R.; Sahu, L.; Kondo, Y.; Takegawa, N.; Han, S.; Jung, J.; Kim, Y.; Fan, S.; Sugimoto, N.; Shammaa, M., Temporal variations of black carbon in Guangzhou, China, in summer 2006. Atmos Chem Phys. 2010, 10 (14), 6471-6485
Viidanoja, J.; Kerminen, V.-M.; Hillamo, R., Measuring the size distribution of atmospheric organic and black carbon using impactor sampling coupled with thermal carbon analysis: method development and uncertainties. Aerosol Sci Tech. 2002, 36 (5), 607-616
Viidanoja, J.; Sillanpää, M.; Laakia, J.; Kerminen, V.-M.; Hillamo, R.; Aarnio, P.; Koskentalo, T., Organic and black carbon in PM 2.5 and PM 10: 1 year of data from an urban site in Helsinki, Finland. Atmos Environ. 2002, 36 (19), 3183-3193
Virkkula, A.; Mäkelä, T.; Hillamo, R.; Yli-Tuomi, T.; Hirsikko, A.; Hämeri, K.; Koponen, I. K., A simple procedure for correcting loading effects of aethalometer data. J Air Waste MA. 2007, 57 (10), 1214-1222
Wang, Y.; Hopke, P. K.; Rattigan, O. V.; Zhu, Y., Characterization of ambient black carbon and wood burning particles in two urban areas. J Environ Monitor. 2011, 13 (7), 1919-1926
Watson, J. G.; Chow, J. C.; Chen, L.-W. A., Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res. 2005, 5 (1), 65-102
Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U., Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci. 2003, 34 (10), 1445-1463.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top