跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/21 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉承鑫
研究生(外文):Cheng-Xin Yeh
論文名稱:螺栓接頭受偏心載重之強度分析與比較
論文名稱(外文):Strength Evaluation of Bolted Connections due to Eccentrical Loads
指導教授:呂東苗
指導教授(外文):Dung-Myau Lue
口試委員:徐耀賜徐暐亭
口試委員(外文):Yao-Tsz HsuWei-Ting Hsu
口試日期:2015-07-02
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:158
中文關鍵詞:螺栓接頭偏心載重
外文關鍵詞:ConnectionEccentrical loadbolt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
AISC規範對螺栓接合之分析僅提供特定排列組合形式、承受特殊角度之載重作用以及等效一維水平偏心之查表值,對於任意方向的載重在使用性上有不足之虞,且工程實務上常碰到螺栓鏽蝕、損壞之情形,使螺栓組合成為任意幾何排列形式,上述兩項觀點在AISC規範中並無提及。本研究將以AISC規範為基準值,驗證本研究發展之計算程式之合理性,經研究顯示此程式可以合理推估出理論強度,並隨使用者修改螺栓幾何、外力條件做出動態更新;亦將垂直偏心與角度影響載重之因素考慮,且同時以程式計算其彈性、極限數值,針對任意角度、排列形式及已知螺栓組之鏽蝕問題提供使用者參考,在實務上可用於設計、補強或是強度評估,對螺栓接合強度分析提供一合理之理論數據。研究顯示在相同條件下,Brandt[3]有較廣泛的使用範圍,2005-AISC[1]及2010-AISC[2]所提供之表格能在特殊條件下快速提供設計C值,彈性方法則提供一簡單快速的設計C值。
When an eccentricity load applied on the plane of faying surface, the bolts will resist the direct shear and the shear from the induced moment.
AISC design manuals only supply the symmetrical bolt groups and prticular load angles for C values with the ultimate strength method, it is not enough for the use of the loads which can strike the bolted connections in any directions, neither the rusted bolt groups. The AISC design manual tables of C values are limited to 75 degrees, the AISC manual does not provide available tables for applying.
For this viewpoint, this study will evaluate the C value for connections in 0°≦θ≦360° which are not limited to the ones given in the AISC manuals and demonstrate rusted bolt groups to evaluate the remainder strength for industry use. Also investigate the C values when the applied load pass through the center of gravity of the bolt group. This study provides an accurate solution for inclined eccentric load through the use of MicroSoft / Excel with Visual Basic for Application (VBA).
ACKNOWLEDGEMENTS i
摘要 / Abstract in Chinese ii
Abstract in English iii
Table of Contents iv
Figure List viii
Table List xi
Chapter 1 Introduction 2
1.1 Background 2
1.2 The Needs of This Research 3
1.3 The Propose of This Research 3
Chapter 2 Analysis Methods 4
2.1 Elastic method / P.7-8, 2005 manual / P.7-8, 2010 manual 4
2.2 Instantaneous center of rotation method 10
2.3 Proposed by Brandt extrapolation formula 12
2.3.1 Rapid determination of ultimate strength of eccentrically 12
2.3.2 Derivation of formulas 13
2.3.3 Procedure for determining the elastic coefficient (Ce) (Brandt) 17
2.3.4 Procedure for determining an approximate value for the ultimate strength coefficient (Cu1) (Brandt) 18
2.3.5 Iterating to improve the approximate coefficient 20
2.4 Method 4 - Marsh 21
Chapter 3 Illustrative Example for Symmetric Bolt Groups with LRFD Design 23
Example 3-1-1. Inclined Angle θ = 0° / xp = 16 in., yp = 0 in. / Method 1 23
Example 3-1-2. Inclined Angle θ = 0° / xp = 16 in., yp = 0 in. / Method 2 26
Example 3-1-3. Inclined Angle θ = 0° / xp = 16 in., yp = 0 in. / Method 3 30
Example 3-1-4. Inclined Angle θ = 0° / xp = 16 in., yp = 0 in. / Method 4 34
Example 3-2-1. Inclined Angle θ = 30° / xp = 16 in., yp = 0 in. / Method 1 36
Example 3-2-2. Inclined Angle θ = 30° / xp = 16 in., yp = 0 in. / Method 2 38
Example 3-2-3. Inclined Angle θ = 30° / xp = 16 in., yp = 0 in. / Method 3 41
Example 3-2-4. Inclined Angle θ = 30° / xp = 16 in., yp = 0 in. / Method 4 46
Example 3-3-1. Inclined Angle θ = 90° / xp = 16 in., yp = 0 in. / Method 1 48
Example 3-3-2. Inclined Angle θ = 90° / xp = 16 in., yp = 0 in. / Method 2 50
Example 3-3-3. Inclined Angle θ = 90° / xp = 16 in., yp = 0 in. / Method 3 53
Example 3-3-4. Inclined Angle θ = 90° / xp = 16 in., yp = 0 in. / Method 4 56
Chapter 4 Illustrate Example for rusted bolt groups with LRFD design 58
Example 4-1-1. Inclined Angle θ = 0° / xp = 15.694 in., yp = -0.667 in. / Method 1 58
Example 4-1-2. Inclined Angle θ = 0° / xp = 15.694 in., yp = -0.667 in. / Method 2 61
Example 4-1-3. Inclined Angle θ = 0° / xp = 15.694 in., yp = -0.667 in. / Method 3 64
Example 4-1-4. Inclined Angle θ = 0° / xp = 15.694 in., yp = -0.667 in. / Method 4 69
Example 4-2-1. Inclined Angle θ = 30° / xp = 15.694 in., yp = -0.667 in. / Method 1 71
Example 4-2-2. Inclined Angle θ = 30° / xp = 15.694 in., yp = -0.667 in. / Method 2 73
Example 4-2-3. Inclined Angle θ = 30° / xp = 15.694 in., yp = -0.667 in. / Method 3 76
Example 4-2-4. Inclined Angle θ = 30° / xp = 15.694 in., yp = -0.667 in. / Method 4 81
Example 4-3-1. Inclined Angle θ = 90° / xp = 15.694 in., yp = -0.667 in. / Method 1 83
Example 4-3-2. Inclined Angle θ = 90° / xp = 15.694 in., yp = -0.667 in. / Method 2 85
Example 4-3-3. Inclined Angle θ = 90° / xp = 15.694 in., yp = -0.667 in. / Method 3 88
Example 4-3-4. Inclined Angle θ = 90° / xp = 15.694 in., yp = -0.667 in. / Method 4 93
Chapter 5 Conclusions 95
References 96
Appendix - A 97
Coordinate Transformation / Coordinate Rotation 97
Appendix – B 104
Source code for Visual Basic for Application (VBA) program being used in this study. 104



Appendix – C 110
This example to show the whole trial balance cycle for Method 3 : G. Donald Brandt. 110
Appendix – D 125
Prove that the Brandt’s Ce = -Σd12 / Mpdmax 125
Appendix - E 127
Example E-1. The C values for chapter 3 in 360 degrees 127
Table E-1. Comparison of C values 131
Example E-2. The C values for chapter 4 in 360 degrees 143
Table E-2. Comparison of C values 147
1.American Institute of Steel Construction (2005), Manual of Steel Construction, Allowable Steel Design, Thirteenth Edition, AISC, Chicago, Illinois.
2.American Institute of Steel Construction (2010), Manual of Steel Construction, Allowable Steel Design, Fourteenth Edition, AISC, Chicago, Illinois.
3.Brandt, G. D. Rapid Determination of Ultimate Strength of Eccentrically Loaded Bolt Groups, AISC Engineering Journal, 2nd Quarter, 1982, Chicago, Illinois.
4.Marsh, Cedric. Discussion: Rapid Determination of Ultimate Strength of Eccentrically Loaded Bolt Groups, AISC Engineering Journal, Vol. 19, 4th Quarter, 1982, Chicago, Illinois.
5.李柏樺,螺栓接頭之彈性、極限分析與比較,(2005),國立中興大學碩士論文。
6.曾育英,螺栓接頭在外力作用下之瞬時中心研究,(2011),國立中興大學碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top