跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃哲陞
研究生(外文):Zhe-Sheng Huang
論文名稱:仿蛾眼超疏水抗反射塗佈於高分子基材
論文名稱(外文):Moth-eye inspired superhydrophobic broadband antireflection coatings on polymer substrate
指導教授:楊宏達楊宏達引用關係
口試委員:陳志銘張鑑祥
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:旋轉塗佈技術仿蛾眼結構抗反射超疏水
外文關鍵詞:spin-coating technologymoth-eye inspiredantireflectivesuperhydrophobic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
此研究以旋轉塗佈技術備製大面積非連續堆積單層二氧化矽膠體晶體/ETPTA高分子複合材料於聚對苯二甲酸乙二醇酯(PET)高分子基板表面,後利用活性離子蝕刻其複合材料,以製備具不同尺寸之乳突狀結構陣列於PET高分子基材,其仿蛾眼乳突狀結構,可降低寬廣波長範圍之入射光反射率,並提高入射光穿透率。此外,此仿蛾眼乳突狀結構可以增加基材表面粗糙度,後經氟化物改質,可降低其表面能,以製備具自潔能力之超疏水且抗反射塗佈於PET高分子基材。

This study reports a scalable spin-coating technology for fabricating monolayer non-close-packed silica colloidal crystal/polyethoxylated trimethylol-propane triacrylate composites on polyethylene terephthalate (PET) substrates. We further demonstrate that the colloidal monolayers can be used as structural templates to pattern moth-eye inspired nipple arrays directly on PET substrates. The resulting nipple arrays exhibit broadband antireflective and superhydrophobic properties after surface modification

目錄
中文摘要 i
Abstract ii
目錄 iii
示意圖目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的與方法 3
1.4 研究架構與流程 4
第二章 文獻回顧 8
2.1 二氧化矽粒子合成 8
2.2 抗反射膜相關文獻 11
2.3 光子晶體相關文獻 15
2.4 超疏水材料相關文獻 22
2.4.1 蓮葉效應 (Lotus Effect) 22
第三章 實驗 26
3.1 實驗儀器設備 26
3.2 實驗藥品 27
3.3 實驗步驟 30
第四章 實驗結果與討論 34
4.1 旋轉塗佈技術 34
4.2 仿蛾眼結構塗佈之製備 37
4.2.1 薄膜影像與結構分析 38
4.2.2 薄膜影像及光學性質分析 43
4.3 具不同尺寸仿蛾眼結構塗佈薄膜之製備 49
4.3.1 具仿蛾眼結構塗佈薄膜 (200奈米二氧化矽膠體所製備)結構分析 50
4.3.2 具仿蛾眼結構塗佈薄膜 (200奈米二氧化矽膠體所製備)之影像與光學性質分析 52
4.3.3 具仿蛾眼結構塗佈薄膜 (320奈米二氧化矽膠體所製備)之結構分析 58
4.3.4 具仿蛾眼結構塗佈薄膜 (320奈米二氧化矽膠體所製備)之影像與光學性質分析 60
4.3.5 具不同尺寸仿蛾眼結構塗佈薄膜之光學性值比較 65
4.4 仿蛾眼結構塗佈之疏水性質與自潔能力 68
4.4.1 具仿蛾眼結構塗佈薄膜 (200奈米二氧化矽膠體所製備)之疏水性質 69
4.4.2 具仿蛾眼結構塗佈薄膜 (250奈米二氧化矽膠體所製備)之疏水性質 72
4.4.3 具仿蛾眼結構塗佈薄膜 (320奈米二氧化矽膠體所製備)之疏水性質 75
第五章 結論 82
第六章 參考文獻 83


[1] Y. Chujo and T. Saegusa in Organic polymer hybrids with silica gel formed by means of the sol-gel method, Vol. 100/1 Springer Berlin Heidelberg, 1992, pp. 11-29.
[2] A. Morikawa, Y. Iyoku, M.-A. Kakimoto and Y. Imai, Journal of Materials Chemistry 1992, 2, 679-689.
[3] Y. Ikeda and S. Kohjiya, Polymer 1997, 38, 4417-4423.
[4] S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim and J. Kim, Polymer 2001, 42, 879-887.
[5] Y. Lu, Y. Yin, B. T. Mayers and Y. Xia, Nano Letters 2002, 2, 183-186.
[6] M. Yu, J. Lin and J. Fang, Chemistry of Materials 2005, 17, 1783-1791.
[7] B. G. Trewyn, I. I. Slowing, S. Giri, H.-T. Chen and V. S. Y. Lin, Accounts of Chemical Research 2007, 40, 846-853.
[8] W. Stöber, A. Fink and E. Bohn, Journal of Colloid and Interface Science 1968, 26, 62-69.
[9] S. Sadasivan, A. Dubey, Y. Li and D. Rasmussen, Journal of Sol-Gel Science and Technology 1998, 12, 5-14.
[10] N. Plumeré, A. Ruff, B. Speiser, V. Feldmann and H. A. Mayer, Journal of Colloid and Interface Science 2012, 368, 208-219.
[11] S. Ray, R. Banerjee, N. Basu, A. K. Batabyal and A. K. Barua, Journal of Applied Physics 1983, 54, 3497-3501.
[12] H. Selhofer, E. Ritter and R. Linsbod, Applied Optics 2002, 41, 756-762.
[13] T.-S. Yang, C.-B. Shiu and M.-S. Wong, Surface Science 2004, 548, 75-82.
[14] M. Kursawe, R. Anselmann, V. Hilarius and G. Pfaff, Journal of Sol-Gel Science and Technology 2005, 33, 71-74.
[15] Y. Zhao, J. Wang and G. Mao, Optics Letters 2005, 30, 1885-1887.
[16] B. G. Prevo, E. W. Hon and O. D. Velev, Journal of Materials Chemistry 2007, 17, 791-799.
[17] K. Askar, B. M. Phillips, X. Dou, J. Lopez, C. Smith, B. Jiang and P. Jiang, Optics Letters 2012, 37, 4380-4382.
[18] K. T. Cook, K. E. Tettey, R. M. Bunch, D. Lee and A. J. Nolte, ACS Applied Materials & Interfaces 2012, 4, 6426-6431.
[19] P. Doshi, G. E. Jellison and A. Rohatgi, Applied Optics 1997, 36, 7826-7837.
[20] H. Nagel, A. G. Aberle and R. Hezel, Progress in Photovoltaics: Research and Applications 1999, 7, 245-260.
[21] B. S. Richards, Solar Energy Materials and Solar Cells 2003, 79, 369-390.
[22] S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim and B.-T. Lee, Vacuum 2004, 76, 507-515.
[23] D. Lee, M. F. Rubner and R. E. Cohen, Nano Letters 2006, 6, 2305-2312.
[24] D. Lee, Z. Gemici, M. F. Rubner and R. E. Cohen, Langmuir 2007, 23, 8833-8837.
[25] Z. Gemici, P. I. Schwachulla, E. H. Williamson, M. F. Rubner and R. E. Cohen, Nano Letters 2009, 9, 1064-1070.
[26] C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen and Y.-F. Chen, ACS Nano 2010, 4, 5849-5854.
[27] B.-T. Liu and W.-D. Yeh, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 356, 145-149.
[28] H. Shimomura, Z. Gemici, R. E. Cohen and M. F. Rubner, ACS Applied Materials & Interfaces 2010, 2, 813-820.
[29] N. C. Linn, C.-H. Sun, P. Jiang and B. Jiang, Applied Physics Letters 2007, 91, 101108.
[30] S. Venkatesh, P. Jiang and B. Jiang, Langmuir 2007, 23, 8231-8235.
[31] W.-H. Huang, C.-H. Sun, W.-L. Min, P. Jiang and B. Jiang, The Journal of Physical Chemistry C 2008, 112, 17586-17591.
[32] Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, Nano Letters 2008, 8, 1501-1505.
[33] W.-L. Min, A. P. Betancourt, P. Jiang and B. Jiang, Applied Physics Letters 2008, 92, 141109.
[34] W.-L. Min, B. Jiang and P. Jiang, Advanced Materials 2008, 20, 3914-3918.
[35] C.-H. Sun, A. Gonzalez, N. C. Linn, P. Jiang and B. Jiang, Applied Physics Letters 2008, 92, 051107.
[36] C.-H. Sun, B. J. Ho, B. Jiang and P. Jiang, Optics Letters 2008, 33, 2224-2226.
[37] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang and S. Abbott, Applied Physics Letters 2009, 94, 263118.
[38] N. Marrero, R. Guerrero-Lemus, B. González-Díaz and D. Borchert, Thin Solid Films 2009, 517, 2648-2650.
[39] C.-H. Sun, W.-L. Min, N. C. Linn, P. Jiang and B. Jiang, Journal of Vacuum Science & Technology B 2009, 27, 1043-1047.
[40] K.-S. Han, J.-H. Shin and H. Lee, Solar Energy Materials and Solar Cells 2010, 94, 583-587.
[41] K.-C. Hsieh, T.-Y. Tsai, D. Wan, H.-L. Chen and N.-H. Tai, ACS Nano 2010, 4, 1327-1336.
[42] X. Chen, Z.-C. Fan, Y. Xu, G.-F. Song and L.-H. Chen, Microelectronic Engineering 2011, 88, 2889-2893.
[43] H. Deniz, T. Khudiyev, F. Buyukserin and M. Bayindir, Applied Physics Letters 2011, 99, 183107.
[44] K.-S. Han, J.-H. Shin, W.-Y. Yoon and H. Lee, Solar Energy Materials and Solar Cells 2011, 95, 288-291.
[45] H. Park, D. Shin, G. Kang, S. Baek, K. Kim and W. J. Padilla, Advanced Materials 2011, 23, 5796-5800.
[46] A. Saito, Science and Technology of Advanced Materials 2011, 12, 064709.
[47] T. Senn, O. Kutz, C. Weniger, J. Li, M. Schoengen, H. Löchel, J. Wolf, P. Göttert and B. Löchel, Journal of Vacuum Science & Technology B 2011, 29, 061601.
[48] S. Tanaka and S. Fujihara, Langmuir 2011, 27, 2929-2935.
[49] Z. B. Wang, M. G. Helander, QiuJ, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, WangS, Z. W. Liu and Z. H. Lu, Nat Photon 2011, 5, 753-757.
[50] N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai and H. Masuda, Progress in Photovoltaics: Research and Applications 2011, 19, 134-140.
[51] R. Brunner, B. Keil, C. Morhard, D. Lehr, J. Draheim, U. Wallrabe and J. Spatz, Applied Optics 2012, 51, 4370-4376.
[52] Q. Chen, C. Martin and D. R. S. Cumming, Plasmonics 2012, 7, 755-761.
[53] K. Choi, S. H. Park, Y. M. Song, C. Cho and H. S. Lee, Journal of Materials Chemistry 2012, 22, 17037-17043.
[54] J. K. Kim, S.-J. Park, S. Kim, H.-H. Park, K.-d. Kim, J.-H. Choi, J. Lee, D.-G. Choi, K. Y. Suh and J.-H. Jeong, Microelectronic Engineering 2012, 100, 12-15.
[55] Y. M. Song, Y. Jeong, C. I. Yeo and Y. T. Lee, Optics Express 2012, 20, A916-A923.
[56] K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang and B. Jiang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 439, 84-100.
[57] M. Burghoorn, D. Roosen-Melsen, J. de Riet, S. Sabik, Z. Vroon, I. Yakimets and P. Buskens, Materials 2013, 6, 3710-3726.
[58] F. Jiao, Q. Huang, W. Ren, W. Zhou, F. Qi, Y. Zheng and J. Xie, Microelectronic Engineering 2013, 103, 126-130.
[59] M. Toma, G. Loget and R. M. Corn, Nano Letters 2013, 13, 6164-6169.
[60] L. Chia-Hsing, S. Cheng-Kuo, C. En-Chiang, L. Cheng-Yao and F. Chien-Chung, Nanotechnology, IEEE Transactions on 2014, 13, 80-84.
[61] Y.-H. Lan, T.-Y. Yang, Y.-H. Liu, D.-H. Lin, B.-H. Wang, M.-K. Wei, T.-L. Chiu, C.-F. Lin, L.-H. Peng, I. C. Cheng, I. Y. Li, C.-K. Wei and J.-H. Lee, SID Symposium Digest of Technical Papers 2014, 45, 371-373.
[62] E. Betzig and J. K. Trautman, Science 1992, 257, 189-195.
[63] K. Deguchi and T. Haga, Comptes Rendus de l''Académie des Sciences - Series IV - Physics 2000, 1, 829-842.
[64] L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm and R. Seemann, Nature 2001, 414, 184-188.
[65] S.-H. Kim, S. Y. Lee and S.-M. Yang, Angewandte Chemie International Edition 2010, 49, 2535-2538.
[66] E. J. Lee, J. J. Kim and S. O. Cho, Langmuir 2010, 26, 3024-3030.
[67] A. C. Pearson, M. R. Linford, J. N. Harb and R. C. Davis, Langmuir 2013, 29, 7433-7438.
[68] X. Zhang and B. L. Weeks, Journal of the American Chemical Society 2014, 136, 1253-1255.
[69] M.-S. She, T.-Y. Lo and R.-M. Ho, ACS Nano 2013, 7, 2000-2011.
[70] M. Richardson, C.-S. Koay, K. Takenoshita, C. Keyser and M. Al-Rabban, Journal of Vacuum Science & Technology B 2004, 22, 785-790.
[71] Z.-W. Liu, Q.-H. Wei and X. Zhang, Nano Letters 2005, 5, 957-961.
[72] K. Diao, J. Zhang, M. Zhou, Y. Tang, S. Wang and X. Cui, Applied Surface Science 2014, 317, 220-225.
[73] W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson and D. T. Attwood, Nature 2005, 435, 1210-1213.
[74] G. Arrabito, S. Reisewitz, L. Dehmelt, P. I. Bastiaens, B. Pignataro, H. Schroeder and C. M. Niemeyer, Small 2013, 9, 4243-4249.
[75] S. Soumya, A. P. Mohamed, L. Paul, K. Mohan and S. Ananthakumar, Solar Energy Materials and Solar Cells 2014, 125, 102-112.
[76] C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel and E. Hadji, Applied Physics Letters 2012, 100, 101103.
[77] S. Noda, N. Yamamoto, H. Kobayashi, M. Okano and K. Tomoda, Applied Physics Letters 1999, 75, 905-907.
[78] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and J. Bur, Nature 1998, 394, 251-253.
[79] W.-C. Lai, S. Chakravarty, X. Wang, C. Lin and R. T. Chen, Optics Letters 2011, 36, 984-986.
[80] M. Kanehara, H. Koike, T. Yoshinaga and T. Teranishi, Journal of the American Chemical Society 2009, 131, 17736-17737.
[81] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch and C. M. Soukoulis, Nat Mater 2004, 3, 444-447.
[82] K. Adachi, M. Miratsu and T. Asahi, Journal of Materials Research 2010, 25, 510-521.
[83] M. Yan, H. Gu, Z. Liu, C. Guo and S. Liu, RSC Advances 2015, 5, 967-973.
[84] 張高德 and 欒丕綱, 物理雙月刊 2006, 28, 844-850.
[85] E. Yablonovitch, Physical Review Letters 1987, 58, 2059-2062.
[86] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic crystals: molding the flow of light, Princeton university press, 2011.
[87] H. Y. Erbil, A. L. Demirel, Y. Avcı and O. Mert, Science 2003, 299, 1377-1380.
[88] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang and D. Zhu, Angewandte Chemie 2003, 115, 824-826.
[89] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley and K. K. Gleason, Nano Letters 2003, 3, 1701-1705.
[90] J. T. Han, D. H. Lee, C. Y. Ryu and K. Cho, Journal of the American Chemical Society 2004, 126, 4796-4797.
[91] L. Jiang, Y. Zhao and J. Zhai, Angewandte Chemie 2004, 116, 4438-4441.
[6] T. Kako, A. Nakajima, H. Irie, Z. Kato, K. Uematsu, T. Watanabe and K. Hashimoto, Journal of Materials Science 2004, 39, 547-555.
[92] X. Lu, C. Zhang and Y. Han, Macromolecular Rapid Communications 2004, 25, 1606-1610.
[93] L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu and S. Prawer, The Journal of Physical Chemistry B 2005, 109, 7746-7748.
[94] G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, Langmuir 2005, 21, 11053-11060.
[95] N. Zhao, Q. Xie, L. Weng, S. Wang, X. Zhang and J. Xu, Macromolecules 2005, 38, 8996-8999.
[96] C.-H. Choi and C.-J. Kim, Physical Review Letters 2006, 96, 066001.
[97] H. S. Lim, J. T. Han, D. Kwak, M. Jin and K. Cho, Journal of the American Chemical Society 2006, 128, 14458-14459.
[98] F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang and X. Zhang, Chemistry of Materials 2006, 18, 1365-1368.
[99] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry and F. B. Pyatt, Applied Physics Letters 2006, 89, 104106.
[100] R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol and C. J. Brinker, Physical Review Letters 2006, 97, 044504.
[101] M. Zhu, W. Zuo, H. Yu, W. Yang and Y. Chen, Journal of Materials Science 2006, 41, 3793-3797.
[102] Z.-G. Guo and W.-M. Liu, Applied Physics Letters 2007, 90, 223111.
[103] X. Hong, X. Gao and L. Jiang, Journal of the American Chemical Society 2007, 129, 1478-1479.
[104] X.-M. Li, D. Reinhoudt and M. Crego-Calama, Chemical Society Reviews 2007, 36, 1350-1368.
[105] T. Cassagneau and F. Caruso, Advanced Materials 2002, 14, 1837-1841.
[106] B. G. Prevo and O. D. Velev, Langmuir 2004, 20, 2099-2107.
[107] H. Yang and P. Jiang, Langmuir 2010, 26, 12598-12604.
[108] H. Yang and P. Jiang, Langmuir 2010, 26, 13173-13182.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top