跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳振偉
研究生(外文):Chen-Wei Wu
論文名稱:以分離元素法探討卵礫石層力學性質及邊坡之崩塌
論文名稱(外文):A Study on the Mechanical Properties and Slope Stability of Gravel Deposits Using the Discrete Element Method
指導教授:張光宗
口試委員:蘇苗彬林銘郎羅佳明
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:卵礫石層PFC2D邊坡
外文關鍵詞:gravel depositsPFC2Dslope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣之卵礫石層分布廣泛,許多卵礫石層覆蓋的地區已有工程建設,卵礫石層邊坡之崩塌及土石流都是非常值得探討的問題。過去卵礫石層的力學性質多利用實驗室及大型現地直剪試驗得到,由於大型現地直剪試驗需耗費大量時間、人力及金錢,數值模擬取代傳統的試驗方式越來越盛行。本研究利用以分離元素法為基礎之數值軟體PFC2D來進行雙軸試驗,透過複迴歸分析以建立宏觀參數與微觀參數的關係式,其中宏觀參數參考前人現地調查整理之強度值(A)、柏松比(ν)、彈性模數(E);微觀參數為正向勁度(kn)、切向勁度與正向勁度比(ks/kn)、摩擦係數(f)、鍵結強度(bond)。且進行驗證,誤差值分別是強度值為16.29%、柏松比為0.6%、彈性模數為3.06%。接著進行PB設計來探討微觀參數對現地宏觀參數的各別重要性,另外也對摩擦係數及鍵結強度做複迴歸分析,得到兩者之關係式可應用於後續的邊坡模擬。

2008年9月15日辛樂克颱風來襲導致南投縣豐丘之邊坡崩塌,造成近50000立方公尺的崩塌災害,導致7人死亡7人受傷。豐丘邊坡由河階地卵礫石組成,根據前人對此地區之研究,利用Plaxis 2D反推得到參數,接著利用PFC2D雙軸試驗對Plaxis 2D之結果做擬合,將擬合結果之參數與第一部分所建立的關係式來進行PFC2D邊坡模擬。最後以弱化表層之摩擦係數及鍵結強度來代表降雨入滲卵礫石層間的水含量上升而使卵礫石間之膠結軟化導致邊坡崩塌的結果。

Gravel deposits are widely distributed in Taiwan. Some areas coverd by gravel deposits already have much construction. Debris flow and slope stability of gravel deposits are important issues to be discussed. We usually used laboratory tests and in situ large scale direct shear tests to obtain the mechanical properties of gravel deposits. Duo to the cost of lots of time, money and manpower on the in situ large scale direct shear test, nowadays we often use numerical analysis instead of conventional tests. Particle Flow Code in two Dimensions is a numerical analysis software. In this study, PFC2D is adopted to simulate biaxial tests. And use Multiple Regression Model to establish the relationship between macro and micro parameters. Macro parameters include strength (A), Poisson ratio (ν), and elastic modulus (E) according to previous researchs. Micro parameters include normal stiffness (kn), ratio of shear to normal stiffness (ks/kn), friction coefficient (f), and bond between particles (bond). The results of validation show that the error are 16.29%, 0.6% and 3.06% for strength (A), Poisson ratio (ν) and elastic modulus (E). Then use the PB design to discuss the relative importance between macro and micro parameters. In order to study the slope stability of gravel deposits,we also use Multiple Regression Model to establish the relationship between the friction coefficient and the bond between particles.

In September 15, 2008, a road slope in the Fengqiu area of Nantou country collapsed during the attack of typhoon Sinlaku. The collapse debris of approximately 50 thousand cubic meters resulted in 7 people died and 7 people injured. The slope is composed of gravel deposits of a river terrace. According to previous researchs in this area, we use Plaxis 2D to obtain parameters. Next, biaxial tests in PFC2D are used to fit the result of Plaxis 2D. The fitting results and the relationship equations in part 1 are applied to establish slope model in PFC2D. Finally, the weakening of the friction coefficient and the bond between particles are used to simulate the increase of water content which results in the decrease of cementation between gravels causing slope failure.

摘要 I
Abstract II
第一章 前言 1
一、 研究動機與目的 1
二、 研究流程 2
三、 論文架構 2
第二章 文獻回顧 4
一、 卵礫石層地質背景 4
二、 卵礫石工程性質 7
三、 PFC2D模擬研究 8
四、 有限元素法及Plaxis 11
第三章 研究區域概述 12
一、 大肚台地、八卦台地(紅土台地堆積層) 12
二、 新社、陳有蘭溪(沖積扇階地) 13
三、 大坑、三義、九九峰(頭嵙山層) 14
四、 豐丘 15
第四章 研究方法 21
一、 有限元素法之數值軟體Plaxis 2D 21
二、 非線性破壞準則 23
三、 現地強度及變形性推估 25
四、 離散元素法之數值分析軟體PFC2D 27
五、 PB設計(Plackett-Burman design) 29
第五章 研究結果 31
一、 PFC2D雙軸試驗 31
二、 PB設計 41
三、 Plaxis 2D數值模擬結果 46
四、 卵礫石基本摩擦角 50
五、 PFC2D豐丘邊坡模擬 54
第六章 結論與建議 60
一、 結論 60
二、 建議 61
參考文獻 63

1.王瑞斌(2001),「南投九九峰卵礫石之排列及其形狀對坡度的影響」,碩士論文,國立台灣大學地質科學系。
2.江崇榮(1980),「台灣坡地社區工程地質調查與探勘報告:台中分區」,經濟部中央地質調查所。
3.李錫堤(1996),「從地形學的觀點看陳有蘭溪的賀伯風災」,地工技術,第57期,第17-24頁。
4.林美聆、王國隆、廖瑞堂、羅偉、王泰典(2008),「重大山崩災害潛勢地區災害模擬與監測(1/4)」,經濟部中央地質調查所。
5.林明慧(2010),「分離元素模型於地質材料及邊坡之應用」,碩士論文,國立中興大學水土保持學系。
6.林朝棨(1957),「台灣地形-臺灣省通志稿卷一土地誌地理篇」,台灣省文獻委員會。
7.張吉佐、陳逸駿、嚴世傑、蔡宜璋(1996),「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,第55 期,第35-46頁。
8.張家偉(2007),「應用分離元素法探討紅菜坪地區地滑演化」,碩士論文,國立台灣大學土木工程研究所。
9.陳宥序(2013),「以分離元素法探討卵礫石層力學性質」,碩士論文,國立中興大學水土保持學系。
10.陳堯中(2001),「卵礫石層隧道工程行為之研究」,土木水利,第28卷第二期,第5-19頁。
11.陳榮河(1990),「紅土台地坍方防治方法之綜合研究」,行政院國家科學委員會防災科技研究報告78-73號。
12.楊麗文(2000),「以顆粒材料力學探討卵礫石層強度性質之研究」,博士論文,國立中興大學土木工程研究所。
13.褚炳麟、黃承郎及鄭順益(1989),「台地礫石堆積層與頭嵙山礫岩層之現地直接剪力試驗研究」,大地工程學術研究討論會,第三屆,第695-706頁。
14.劉亦酉(2002),「PB12設計的投影性質研究」,國立中央大學統計研究所碩士論文。
15.蔡秉儒(1997),「礫石形狀分布及其排列方式相對於邊坡穩定的關係」,土木水利,第22卷第一期,第19-38頁。
16.蔣志宏(2007),「分離元素法應用於土石流行為之研究」,碩士論文,朝陽科技大學營建工程系。
17.鄧屬予(1996),「台灣卵礫石層的地質背景」,地工技術,第55期,第5-24頁。
18.鄭承昌、翁孟嘉、李宏輝(2010),「以分離元素法探討砂岩彈塑性變形特性之研究」,全國岩盤工程研討會,高雄,第407-416頁。
19.鄭敏杰(2011),「以野外調查與分離元素法評估卵礫石層強度性值」,碩士論文,國立中興大學水土保持學系。
20.賴泊靖、徐松圻(2010),「以分離元素法模擬卵礫石層中地錨拉拔行為」,全國岩盤工程研討會,高雄,第463-502頁。
21.Brinkgreve, R. B. J. and Bakker, H. L. (1991). “Nonlinear finite element analysis of safety factors.”, Computer Methods and Advances in Geomechanics, 1117-1122.
22.Baker, R. (2004). “Non-linear strength envelopes based on triaxial data.”, Journal of Geotechnical and Geoenvironmental Engineering, 130, 498-506.
23.Baker, R. (2005). “Variational slope stability analysis of materials with nonlinear failure criterion.”, The Electronic Journal of Geotechnical Engineering, Technion City.
24.Baker, R. (2006). “A relation between safety factors with respect to strength and height of slopes.”, Computers and Geotechnics, 33, 275-277.
25.Clough, R. W. and Woodward, R. J. (1967). “Analysis of embankment stress and deformations.”, Journal of the Soil Mechanics and Foundations Division., ASCE, 529-549.
26.Cundall, P. A. (1971). “A computer model for simulating progressive large scale movements in blocky rock systems.”, Proceedings of Symposium of the International Society of Rock Mechanics,Vol. 1 , Paper No.II-8.
27.Cundall, P. A. and Strack, O. D. L. (1979). “A discrete unmercal model for granular assemblies.”, Geotechnique 1979,29(1),47-65.
28.Chen, R. H., Kuo, K. J., Chen, Y. N., Ku, C. W. (2011). “Model tests for studying the failure mechanism of dry granular soil slopes.”, Engineering Geology, 119, 51-63.
29.Chang, K. T., Cheng, M. C. (2014). “Estimation of the shear strength of gravel deposits based on field investigated geological factors.”, Engineering Geology, 171, 70-80.
30.Chang, K. T., Kang, Y. M., Louis Ge, Cheng, M. C. (2015). “Mechanical properties of gravel deposits evaluated by nonconventional methods.”, ASCE Journal of Materials in Civil Engineering, (ASCE)MT.1943-5533.0001287.
31.Giani, G. P. (1992). “Rock slope stability analysis.”, A. A. Balkema, Rotterdam, 361 p.
32.Holtz, W. G. and Ellis, W. (1961). “Triaxial shear characteristics of clayey gravel soils.”, Proc. the 50th Intern. Conf. on Soil Mech. And Found. Eng. vol. 1 , 143.
33.Hoek, E. and Brown, E. T. (1980). “Empirical strength criterion for rock masses.”, ASCE Journal of the Geotechnical Engineering Division, 106(9), 1013-1035.
34.Hardin, B. O., Kalinski, M. E. (2005). “Estimating the shear modulus of gravelly soils.”, ASCE Journal of Geotechnical and Geoenvironmental Engineering, (ASCE)1090-0241,131(7),867-875.
35.Itasca.(2004). “User’s manual, PFC2D.”, Minneapolis, Minnesota, Itasca Consulting Group, Inc.
36.Miller, E. A. and Sowers, G. F. (1957). “The strength characteristics of soil-aggregate mixtures.”, Highway Research Board Bulletin, 183, 16–23.
37.Nusier, O. K., Almohd (Ayasrah ), I. M. and Jaradat, R. A. (2008). “Nonlinearity of shear strength and stress-strength behavior and induced stress predictions.”, International Conference on Construction and Building Technology, E, 43-52.
38.Potytndy, D. and Cundall, P. (2004). “A bonded-particle model for rock.”, International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364.
39.Seed, H. B., Wong, R. T., Idriss, I. M., Tokimatsu, K. (1986). “Moduli and damping factors for dynamic analysis of cohesionless soils.”, Journal of Geotechnical Engineering, 112(11), 1016-1032.
40.Vallejo, L. E. and Zhou, Y. (1994). “The mechanical properties of simulated soil–rock mixtures.”, Proc. the 13th Intern. Conf. on Soil Mech. and Found. Engrg, New Delhi, India, vol. 1, 365–368.
41.Valentino, R., Barla, G., Montrasio, L. (2007). “Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests.”, Rock Mechanics and Rock Engineering, 25 pp.
42.Zienkiewicz, O. C., Humpheson, C. and Lewis, R. W. (1975). “Associated and non-associated visco-plasticity and plasticity in soil mechanics.”, Geotechnique 25, No. 4, 671-689.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top