跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳子佳
研究生(外文):Tzu-Chia Wu
論文名稱:應用無人飛行載具以大尺度質點影像法量測水流表面流速
論文名稱(外文):Application of Unmanned Aerial Vehicle with Large-Scale Particle Image Velocimetry for Measuring Water Surface Velocities
指導教授:詹勳全詹勳全引用關係
口試委員:呂珍謀李明靜洪健豪
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:LSPIVUAV流場觀測表面流速
外文關鍵詞:LSPIVUAVflow fieldsurface velocity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現地流速的觀測方式分為接觸式及非接觸式,接觸式方法主要倚靠觀測人員運用儀器接觸水面量測,不僅費時亦可能造成儀器損失,而非接觸式方法能減少操作人員並降低儀器損壞。非接觸式方法中的大尺度影像質點量測方法(Large Scale Particle Image Velocimetry, LSPIV)由單次量測即可獲得流場面的資訊。分析自然河道之流速時,相較於單點流速資料,流場面的資訊能夠分析河川整體之流速分佈。本研究建立出一套機動性觀測流場系統UAV-LSPIV,以無人飛行載具(Unmanned Aerial Vehicle, UAV)作為相片擷取載具,擷取影像後以LSPIV技術分析流場。
本研究自行建置之UAV系統包含六旋翼飛行器、電子可調式雲台、Sony nex5T相機及影像傳輸模組,影像傳輸模組能即時於飛行中觀測水流影像,透過可調式雲台能旋轉相機鏡頭角度,使UAV拍攝時能正攝水面減少影像之變形。
LSPIV分析法先在室內實驗經過均勻流場驗證,與聲波都卜勒流速儀(Acoustic Doppler velocimetry, ADV)相較,其平均差異均在9%左右,而後運用建置之UAV-LSPIV分別進行高低流量之室外實驗,室外實驗區域於台中市旱溪積善橋下游河段,低流量試驗與手持式ADV量測流速在質點分佈處差異低於8%,高流量試驗與PTV(Particle Tracking Velocimetry)量測差異約為4%。透過室外實驗驗證,本研究所研發之UAV-LSPIV,可正確分析出大範圍之河道表面流場,望能供未來河道生態分析或數值模擬之用。


River flow measurement technologies are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. Its protocols are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and instrument damages can be avoided from directly attaching to the flow. Nonintrusive measurements use radar or image velocimetry to measure the velocities at the free surface.The image velocimetry, such as large scale particle image velocimetry (LSPIV), access not only the point velocity but the flow velocities in an area. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in a field.
The mobile system is based on a six-rotor UAV helicopter, with a Sony nex5T camera, a gimbal, and an image transfer device. UAV attaches an activate gimbal, which help maintain the camera lens orthogonal to the water surface and prevent images from being distorted. The image transfer device can monitor the captured image simultaneously.
Verification of LSPIV was first set up in laboratory, the deviation from velocity measured by current meter and LSPIV is below 9%. After that, the mobile system was applied to field experiments under different flow conditions. In the low flow experiments, the deviation of velocities measured by UAV-LSPIV and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. In the high flow experiment, the deviation of velocities measured by UAV-LSPIV and Particle Tracking Velocimetry (PTV) is about 4%. The results of the field experiments suggest that the UAV-LSPIV is applicable to measure the surface flows in the fields.


摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 前言 1
1.1 研究動機與目的 1
1.2 本文架構 2
第二章 文獻回顧 4
2.1 流速量測的沿革 4
2.2 質點影像量測法(Particle image velocimetry, PIV) 9
2.3 大尺度質點影像量測法(Large-Scale Particle Image Velocimetry, LSPIV) 11
2.4 影像擷取設備於不同載具之LSPIV比較 15
第三章 理論基礎 19
3.1 PIV處理 20
3.2 坐標轉換 21
3.3 影像濾波 23
第四章 材料與方法 28
4.1 人工實驗渠道 28
4.2 UAV-LSPIV 30
4.3 追蹤粒子 38
4.4 室內實驗 41
4.5 室外實驗 46
第五章 結果與討論 54
5.1 室內實驗 54
5.2 低流量之室外實驗 66
5.3 高流量之室外實驗 76
第六章 結論及建議 88
6.1 結論 88
6.2 建議 89
參考文獻 90
附錄一 93


1.李明靜(2003),「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程研究所博士論文。
2.吳榮峰(2003),「大尺度質點影像量測法之應用-分析水面流場」,國立成功大學水利及海洋工程研究所碩士論文。
3.Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 23(1), 261-304.
4.Bradley, A. A., Kruger, A., Meselhe, E. A., & Muste, M. V. (2002). Flow measurement in streams using video imagery. Water Resources Research, 38(12), 51-1.
5.Buchhave, P. (1992). Particle image velocimetry—status and trends. Experimental Thermal and Fluid Science, 5(5), 586-604.
6.Cenedese, A., Doglia, G., Romano, G. P., De Michele, G., & Tanzini, G. (1994). LDA and PIV velocity measurements in free jets. Experimental Thermal and Fluid Science, 9(2), 125-134.
7.Cowen, E. A., & Monismith, S. G. (1997). A hybrid digital particle tracking velocimetry technique. Experiments in Fluids, 22(3), 199-211.
8.Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., & Kruger, A. (2003). River gauging using PIV techniques: a proof of concept experiment on the Iowa River. Journal of Hydrology, 277(3), 182-194.
9.Frazier, A. H. (1974). Water Current Meters in the Smithsonian Collections of the. National Museum of History and Technology.
10.Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research, 36(3), 397-414.
11.Fujita, I., & Kunita, Y. (2011). Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. Journal of Hydro-environment Research, 5(4), 323-331.
12.Gonzalez, R. C. & Wintz, P. 1987 Digital image processing. Addison-Wesley Publishing Company, Inc.
13.Hauet, A., A. Kruger, W. F. Krajewski, A. Bradley, M. Muste, J.-D. Creutin, and M. Wilson (2008), Experimental system for real-time discharge estimation using an image-based method, J. Hydrol., 13, 105 – 110.
14.Kim, M. Muste, A. Hauet, W.F. Krajewski, A. Kruger, A. Bradley. (2008). Stream discharge using mobile large-scale particle image velocimetry: a proof of concept. Water Resources Research, 44, p. W09502
15.Maidment (1993), Handbook of Hydrology, McGraw-Hill, New York.
16.Meselhe, E. A., Peeva, T., & Muste, M. (2004). Large scale particle image velocimetry for low velocity and shallow water flows. Journal of Hydraulic Engineering, 130(9), 937-940.
17.Muste, M., Xiong, Z., Bradley, A., & Kruger, A. (2004). Large-Scale Particle Image Velocimetry: a Reliable Tool for Physical Modeling.
18.Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T. & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3), 355-368.
19.Rantz, S. F. (1982), Measurement and Computation of Stream-flow: Volume 1. Measurement of Stage and Discharge, U.S Government Printing Office, Washington.
20.Turnipseed, D. P., & Sauer, V. B. (2010).Discharge measurements at gaging stations (No. 3-A8). US Geological Survey.
21.USGS (1968), Selected Techniques in Water Resources Investigations, U.S Government Printing Office, Washington.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top