跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐培原
研究生(外文):Pei-Yuan Hsu
論文名稱:坡地之二維水理分析
論文名稱(外文):Hydraulic analysis of a 2-D water flow down a slope
指導教授:謝平城謝平城引用關係
指導教授(外文):Ping-Cheng Hsieh
口試委員:羅偉誠鍾文貴
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:孔隙介質流漫地流垂直流速
外文關鍵詞:porous media flowoverland flowvertical velocity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本文以水力學角度,將流場分為兩個區域(水層與土層),推求水流流經裸露地之水、土二層水平與垂直流速分布。不同於以往,本研究並未忽略垂直流速,因此增加了慣性力項,故以新的方式來推求水平與垂直流速分布,對裸露地水流有更深一層的探討。文中將土層視為一具有透水性的孔隙介質,因此水、土交介面上之水平與垂直流速不為零,此結果更能貼近真實現象。
流場之求解過程中,水層之動量方程式以 Navier-Stokes 方程式來描述水層之運動現象,土層則使用宋長虹(1993)改進 Biot (1956b)之多孔彈性介質理論,配合 Desseaux (1999)的流速設定型式,可導出一組耦合之非線性常微分方程式,利用 Arikoglu & Ozkol (2006)所提出之微分變換運算法求解,最後得到流場水平與垂直流速分布與各項物理量。
求得流場各項物理量之解析解後,選定並代入相關參數即可觀察流速、剪應力、正向應力等物理量之分布情形,發現垂直流速確實遠小於水平流速,且垂直流速約只有水平流速之千分之一。此外,亦發現在x=0處,考量慣性力之水層水平流速,比採用忽略慣性力之水層水平流速約增加0.3倍 本研究特別著重於水平與垂直流速之分布,並與前人資料進行比較、驗證,結果尚可接受。本研究未忽略垂直流速,不僅解析之難度更甚以往,求解的方法與技巧亦需配合許多相關文獻及理論,故對坡地漫地流之水理解析提供新的想法,開闢新的研究方向。

In this study, the flow field is divided into two regions (the water layer and soil layer). By additionally considering the vertical velocity and the inertia force, we were aimed at having a deeper discussion on the water flow down a slope. Considering the vertical velocity of the flow, we searched for a new way to derive horizontal and vertical velocity distribution both in the water and soil layers. In this article, the soil layer is regarded as a porous media so that the nonzero velocity at the ground surface could be expected.
In the water layer, we adopt the Navier-Stokes equation to describe the motion of the water flow, while in the soil layer, Song’s (1993) laminar model based on Biot’s poroelastic theory (1956b) is chosen. With the velocity type set by Desseaux (1999), we derive a couple of nonlinear ordinary differential equations which are solved by taking the Differential Transform Method (DTM) proposed by Arikoglu & Ozkol (2006). Finally, we derive the horizontal and vertical velocity distributions and some other physical quantities.
After the analytical solution is obtained, we select the relevant parameters and then the velocity, shear stress, and normal stress distributions can be discussed. We find that the vertical velocity is actually far less than the horizontal velocity, and is about 0.1% of the horizontal one. Besides, we also find that at x=0 , the horizontal velocity considering inertia force is 0.3 time more than neglecting the inertial force. In this research, we focus on the distribution of horizontal and vertical velocity, and the results compared with the previous research are acceptable. Because we don’t neglect the vertical velocity of flow, as a result, not only the difficulty is more than ever, but also we have to search more relevant methods and theories in the literature. The results of this study are inspiring and show a new way of the future research on the overland flow.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
符號定義表 VIII
第一章 緒論 1
1.1 研究緣起 1
1.2 研究動機 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1 多孔彈性介質理論之相關研究 3
2.2 孔隙層非等向性之相關研究 4
2.3 以解析解求垂直與水平速度之相關研究 5
2.4 地表入滲之相關研究 6
2.5 微分變換法(D.T.M.)之相關研究 7
第三章 理論推導 8
3.1 水層之控制方程式 9
3.2 微分變換法後之水層控制方程式 12
3.3 土層之控制方程式 16
3.4 邊界條件 25
3.5 解析解 29
3.5.1 等向性有限厚土層 29
3.5.2 非等向性有限厚土層 34
第四章 結果與討論 40
4.1 等向性有限厚土層 40
4.1.1 各項參數之選用 40
4.1.2 垂直流速分布之探討 41
4.1.3 水平流速分布之探討 45
4.1.4 壓力分布之探討 51
4.1.5 各項應力分布之探討 53
4.2 非等向性有限厚土層 59
4.2.1 各項參數之選用 59
4.2.2 非等向性有限厚土層垂直流速分布之探討 60
4.2.3 非等向性有限厚土層水平流速分布之探討 61
4.2.4 非等向性有限厚土層壓力分布之探討 62
4.3 理論驗證 64
4.3.1 水平流速分布之驗證 64
4.3.2 坡地入滲速率之驗證 68
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考文獻75
附錄 A 坡地斜面坐標軸之坐標變換推導證明 81
附錄 B 以 6 階 DTM 法求解流速之 MAPLE 程式 88

1. 江憶玲,1995,「剪力流流過多孔介質底床之研究」,碩士論文,台灣大學土木工程學研究所,台北。
2. 宋長虹,1993,「水波作用下多孔彈性底床動力反應之研究」,博士論文,台灣大學土木工程學研究所,台北。
3. 李明浩 2003 「坡面土壤特性對於地下水入滲行為影響之研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
4. 洪維恩,2000,「數學魔法師 Maple6.0」,碁峰資訊,台北。
5. 胡秀怡,2012,「均勻降雨下植生地表水流之解析解」,碩士論文,國立中興大學水土保持學系研究所,台中。
6. 孫永達,1998,「剛性透水底床明渠水流及其懸浮泥沙之分析」,碩士論文,台灣大學土木工程學研究所,台北。
7. 許煜聖,2003,「水流流經植生地表之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。
8. 陳右錚,2008,「透水性路面之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。
9. 楊佳錫,2010,「均勻降雨時坡地之水理分析」,碩士論文,國立中興大學水土保持學系研究所,台中。
10. 萬鑫森譯,1991,「基礎土壤物理學」,茂昌圖書有限公司,台北。
11. 蕭永明,2002,「均勻入滲時坡面地下水流之理論分析」,碩士論文,國立中央大學土木工程研究所,桃園。
12. Arikoglu, A. and Ozkol I., 2006, “Solution of differential-difference equations by using differential transform method,” Applied Mathematics and Computation, 181:153–162.
13. Assouline, S. and Ben-Hur M., 2006, “Effects of rainfall intensity and slope gradient on the dynamics of interrill erosin during soil surface sealing,” Catena, 66:211–220.
14. Beavers, G.S. and Joseph, D.D., 1967, “Boundary Conditions at a Naturally Permeable Wall,” JFM, 30(1):197–207.
15. Berman, A.S., 1953, “Laminar Flow in Channels with Porous Walls,”Journal of applied physics, 24:1232–1235.
16. Biot, M.A., 1956a, “Theory of propagation elastic waves in a fluid saturated porous solid. I. low-frequency range,”Journal of Acoustical society of America, 28:168–178.
17. Biot, M.A., 1956b, “Theory of propagation elastic waves in a fluid saturated porous solid. II. high-frequency range,” Journal of Acoustical society of America, 28:179–191.
18. Biot, M.A., 1962, “Mechanics of deformation and acoustic propagation in porous Media,” Journal of Physics, 33(4):1482–1498.
19. Bruschke, M.V. and Advani, S.G., 1990, “A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media,”Polymer Composites, 11(6):398–405.
20. Cash, J., and Karp, A.H., 1990, “A variable order Runge-Kutta method for initial-value problems with rapidly varying right-hand sides, ” ACM Transactions on Mathematical Software, 16(3):201–222.
21. Chan, A.W. and Hwang, S.T., 1991, “Anisotropic In-Plane Permeability of Fabric Media,” Polymer Engineering and Science, August 1991, 31(16):1233–1239.
22. Chen, S.C. and Wu, C.M., 1996, “Kinematic Wave Model of Subsurface Flow under Hillslope,” Proc Natl. Sci. Counc. ROC(A), 21(5):437–444.
23. Chen, X. and Chiew, Y.M., 2004, “Velocity Distribution of Turbulent Open-Channel Flow with Bed Suction,” Journal of Hydraulic Engineering, 130:140–148.
24. Chow, V.T., 1973, “Open-Channel Hydraulics,” Mc-Graw-Hill Co., Singapore,149.
25. Dagadu, J.S. and Nimbalkar, P.T., 2012, “Infiltration Studies of Different Soils under Different Soil Conditions and Comparison of Infiltration Models with Field Data,” International Journal of Advanced Engineerig Technology, 3:154–157.
26. Deng, C. and Martinez, D.M., 2004, “Viscous flow in a channel partially filled with a porous medium and with wall suction,”Chemical Engineering Science, 60:329–336.
27. Desseaux, A., 1999, “Influence of a magnetic field over a laminar viscous flow in a semi-porous channel,” International Journal of Engineering Science, 37:1781–1794.
28. Essig, E.T., Corradini, C., Morbidelli R., and Govindaraju R.S., 2009, “Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results,” Journal of Hydrology, 374:30–42.
29. Herrada, M.A., Gutierrez-Martin, A., and Montanero, J.M., 2014, “Modeling infiltration rates in a saturated/unsaturated soil under the free draining condition,” Journal of Hydrology, 515:10–15.
30. Hillel, D., 1980, Application of soil physics, Academic press, New York.
31. Hsieh, P.C. and Bolton, S., 2007, “Laminar Surface Water Flow Over Vegetated Ground,” Journal of Hydraulic Engineering, ASCE, Vol. 133(3):pp.335–341.
32. Iwanek, M., 2008, “A Method for Measuring Saturated Hydraulic Conductivity in Anisotropic Soils,” Soil Sci. Soc. Am. J., 72(6):1527– 1531.
33. King, J.R. and Cox, S.M., 2000, “Asymptiotic analysis of the steady-state and time-dependent Berman problem,” Journal of Engineering Mathematics, 39:87–130.
34. Kirkgoz, M.S. and Ardichoglu, M., 1997, “Velocity Profiles of Developing and Developed Open Channel Flow,” Journal of Hydraulic Engineering, 123:1099–1105.
35. Krishna, D.J., Basak, T. and Das, S.K., 2008, “Natural convection in a heat generating hydrodynamically and thermally anisotropic non-Darcy porous medium,” International Journal of Heat and Mass Transfer, 51:4691–4703.
36. Kuznetsov, A.V., 1998, “Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid,” International Journal of Heat and Mass Transfer, 41, 2556–2560.
37. Makungo, R. and Odiyo, J.O., 2011, “Determination of Steady State Infiltration Rates for Different Soil Types in Selected Areas of Thulamela Municipality,” South Africa SANCIAHS National Hydrology Symposium.
38. Nath, T.K. and Maharana, M., 2011, “Effect of Seepage on Open Channel Flow,” International Journal of Earth Sciences and Engineering, 4(5):867–874.
39. Neale, G. and Nader, W., 1974, “Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium,” Canadian Journal of Chemical Engineering, 52:475–478.
40. Ochoa-Tapia, J.A. and Whitaker, S., 1995a, “Momentum transfer at the boundary between a porous mediu, and a homegeneous fluid I: theoretical development,” International Journal of Heat and Mass Transfer, 38:2635–2646.
41. Ochoa-Tapia, J.A. and Whitaker, S., 1995b, “Momentum transfer at the boundary between a porous mediu, and a homegeneous fluid II: comparison with experiment,” International Journal of Heat and Mass Transfer, 38:2647–2655.
42. Philip, J.R., Knight J.H., 1997, “Steady Infiltration Flows with Sloping Boundaries,” Water Resources Research, 33(8):1833–1841.
43. Philip, J.R., 1991, “Hillslope Infiltration: Planar Slopes,” Water Resources Research, 27(1):109–117.
44. Philip, J.R., 1988, “Steady Unsaturated Seepage Above a Sloping Impermeable Base,” Water Resources Research, 24(7):1192–1196.
45. Philip, J.R., 1971, “General Theorem on Steady Infiltration from Surface Sources With Application to Point and Line Sources,” Soil Sci. Soc. Amer. Proc., 35:867–871.
46. Philip, J.R., 1968, “Steady Infiltration from Buried Point Sources and Spherical Cavities,” Water Resources Research, 4(5):1039–1047.
47. Rashidi, M.M. and Sadri, S.M., 2010, “Solution of the Laminar Viscous Flow in a Semi-Porous Channel in the Presence of a Uniform Magnetic Field by Using the Differential Transform Mothed,” Int. J. Contemp. Math. Sciences, 5(15):711–720.
48. Rice, P.A., Fontugne, D.J., Latini, R.G. and Barduhn, A.J., 1970, “Anisotropic Permeability in Porous Media,” Flow Through Porous Media Symposium, 62(6):23–31.
49. Szabo, B.A. and McCaig, I.W., 1968, “A Mathematical Model for Transient Free Surface Flow in Nonhomogeneous or Anisotropic Porous Media,” Journal of the American Water Resources Association, 4(3):5–18.
50. Wang, X., Thauvin, F. and Mohanty, K.K., 1998, “Non-Darcy flow through anisotropic porous media,” Chemical Engineering Science, 54:1859–1869.
51. Yeh, H.D. and Kuo, C.C., 2010, “An Analytical Solution for Heterogeneous and Anisotropic Anticline Reservoirs under Well Injection,” Advances in Water Resources, 33:419–429.
52. Yuan, S.W., 1955, “Further Investigation of Laminar Flow in Channels with Porous Walls,” Journal of Applied Physics, 27(3):267–269.
53. Zachmann, D.W., 1978, “A Mathematical Treatment of Infiltration from a Line Source into an Inclined Porous Medium,” Soil Sci. Soc. Am. J., 42:685–688.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top