跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游曉韵
研究生(外文):Hsiao-Yun Yu
論文名稱:探討以Synechococcus sp.為植種源之光合作用型微生物燃料電池產電效率
論文名稱(外文):Power Performance of Photosynthetic Microbial Fuel Cell seeded by Synechococcus sp.
指導教授:洪俊雄洪俊雄引用關係
口試委員:張怡塘張育傑
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:83
中文關鍵詞:光合作用型微生物燃料電池
外文關鍵詞:Photosynthetic Microbial Fuel CellPMFC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於全球面臨氣候變遷、溫室效應以及化石燃料枯竭危機,發展再生能源成為解決能源危機的可行方法。再生能源包含太陽能、風能、水力能、地熱能以及生質能。光合作用型微生物燃料電池( Photosynthetic microbial fuel cells, PMFCs)既屬於生質能源也是太陽能源之應用技術,其原理是利用微生物行光合作用時將電子由電子傳遞鏈中丟出,以陽極捕捉電子,透過外部電路電子最終來到陰極與氧氣結合形成水。本研究主要目的為以台灣本土的藍綠菌建構PMFC系統與環境因子的改變對此系統產電效率之影響,期望能夠找出最適合PMFC產電的環境條件。
本研究以台南市海東里生態池分離出之藍綠菌作為PMFC產電菌,經過分子生物技術鑑定此菌為Synechococcus sp. PCC 6312。實驗以批次方式針對不同pH、無機碳源、離子強度、光照強度以及光波長進行PMFC產電實驗,反應槽採用單槽式空氣陰極反應槽,陽極為2 cm × 15 cm碳布,陰極為直徑3公分的圓形碳布。研究結果顯示,電池在中性環境(pH 7)下有較好的產電效果,整體輸出電量是0.32 C(coulomb, C);無機碳源實驗裡,當系統內添加NaHCO3可以提高菌的生長速率,但是比起不添加NaHCO3的組別產電量卻沒有特別突出,因此PMFC有別於一般微生物燃料電池(Microbial fuel cells, MFCs),無需提供碳源就能產電。光照強度實驗(1000、2000、3000與4000 lux),各組產生的電能分別為0.645 C、1.556 C、0.248 C以及0.606 C,結果顯示隨者照光強度的提高產電量並沒有增加;若比較藍光、紅光與白光三種光源對PMFC的影響,當系統照射藍光時產電效果最佳,其次是紅光。提高溶液離子強度可以增加導電度,但是在實驗中發現當添加100 mM NaCl其產電量優於300 mM NaCl,原因為Synechococcus sp. PCC 6312對於鹽的容忍度低,因此鹽的濃度過高反而會造成菌的活性下降,導致系統產電效率不佳。
本研究進一步比較溶氧的影響,發現若是實驗結束後溶氧值越高PMFC表現效能越差,推論溶解氧會與陽極競爭電子,降低系統輸出電壓。在PMFC中添加還原劑Glutathion後,系統的輸出電壓可以增加至0.12 V,且實驗結束後系統的溶氧值能維持在0 mg/l。
此外,本研究以針對藍綠菌16S rRNA基因的引子對進行Real-time PCR,試圖分析藍綠菌活性變化與產電之間關係,初步實驗結果認為當藍綠菌16S rRNA基因總量上升PMFC系統產電量亦有增加的趨勢,然而實驗過程中持續受到溶氧量過高的干擾,未來若能夠解決系統內部高溶氧的問題,就能夠更有助於提升PMFC的產電效率及穩定性。
中文摘要 i
英文摘要ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 前言 1
第一節 研究起源 1
第二章 文獻回顧 3
第一節 能源概述 3
一、能源發展 3
二、再生能源 5
三、生質能源 6
第二節 微生物燃料電池 (Microbial fuel cells, MFCs) 7
一、生物電化學系統 7
二、微生物燃料電池簡介 8
三、微生物燃料電池作用機制 10
第三節 微生物燃料電池影響因子 13
第四節 光合作用型微生物燃料電池 15
一、光合作用 16
二、光合作用電子傳遞鏈 18
三、光合作用型微生物燃料電池產電機制 19
第五節 微生物燃料電池產能計算方式 20
第六節 文獻閱讀心得與研究方向 21
第三章 實驗材料與法 23
第一節 實驗架構 23
第二節 實驗設備 25
第三節 實驗方法 26
一、微生物來源與培養條件 26
二、光合作用型微生物燃料電池之批次實驗 26
第四節 分析方法 27
一、菌落前處理 27
二、分子生物技術分析 27
第五節 實驗內容 32
第四章 結果與討論 33
第一節 光合作用型微生物燃料電池系統內微生物族群分析 33
第二節 光合作用型微生物燃料電池系統效能探討 35
一、藍綠菌菌液在不同pH起始值下對系統產電效能的影響 36
二、碳源濃度對系統產電效能影響 39
三、不同光照強度對系統產電效能影響 42
四、照射不同光波長以及照光循環對系統產電效能影響 45
五、離子強度 48
六、實驗結束後系統內電解液分析 51
七、溶氧 56
第三節 Real-time PCR藍綠菌活性與電能輸出之分析 61
一、 Synechococcus sp. PCC 6312活性分析 61
第四節 綜合討論 64
第五章 結論與建議 67
第一節 結論 67
第二節 建議 70
參考文獻 71
王志? (2010) 光合微生物燃料電池產電機制之研究及新式微生物燃料電池之開發. 國立中興大學.

許學霖 (2011) 使用Shewanella decolorationis NTOU1/膽紅素氧化脢做為陽/陰極生物性觸媒之微生物燃料電池以增進生物產氫程序之能源回收. 國立成功大學.

林玫君 (2002) 環境因子對聚球藻RF-1光合作用的影響. 國立台灣師範大學.

謝志強 (2008a) 生質能源產業發展動態分析, 台北市工研院院產業經濟與趨勢研究中心.

吳耿東與李宏台 (2007) 全球生質能源應用. 林業研究專訊 14: 5-9.

張福傳, 張美琴, and 蘇郁雅 (2011) 臺灣有機廢棄物厭氧醱酵產製生質能之期待與展望. 化工技術 19: 124-137.

謝志強 (2008b) 全球生質能源產業與技術發展現況與趨勢. 科技發展政策報導 5: 15-39.

台灣電力公司 (2012) 台灣發電量占比圖
URL http://www.taipower.com.tw/

Abdul Raheem, A.M.O., and Adekola, F.A. (2011) Air Pollution: A Case Study of Ilorin and Lagos Outdoor Air. In Indoor and Outdoor Air Pollution.

Kendrick, R.E., and Kronenberg, G.H.M. (1986) Photomorphogenesis in Plants. Netherlands: Kluwer Academic Publishers.

Logan, B.E. (2008) Microbial Fuel Cells. Hoboken, New Jersey: John Wiley & Sons, Inc.

Reece, J.B., Campbell, N.A., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., and Jackson, R.B. (2012) Photosynthesis. In Campbell Biology 9th Edition: Benjamin Cummings.

Journal articles
Ahna, Y., and Logan, B.E. (2010) Effectiveness of Domestic Wastewater Treatment Using Microbial Fuel Cells at Ambient and Mesophilic Temperatures. Bioresource Technology 101: 469-475.

Amsellem-Ouazana, D., Bièche, I., Tozlu, S., Botto, H., Debré, B., and Lidereau, R. (2006) Gene Expression Profiling of Erbb Receptors and Ligands in Human Transitional Cell Carcinoma of the Bladder. The Journal of urology 175: 1127-1132.

Badger, M.R., and Price, G.D. (2003) CO2 Concentrating Mechanism in Cyanobacteria: Molecular Components, Their Diversity and Evolution. Journal od Experimental Botany 54: 609-622.

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., and Zoran, M.J. (2005) Circadian Rhythms from Multiple Oscillators: Lessons from Diverse Organisms. Nature Reviews Genetics 6: 544-556.

Berry, S., Schneider, D., Vermaas, W.F.J., and Rogner, M. (2002) Electron Transport Routs in Whole Cells of Synechocystis sp. Strain PCC 6803: The Role of the Cytochrome Bd-Type Oxidase. Biochemistry 41: 3422–3429.

Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. (2002) Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science 295: 483-485.

Campbell, D., Zhou, G., Gustafsson, P., Oquist, G., and Clarke, A.K. (1995) Electron Transport Regulates Exchange of Two Forms of Photosystem 11 Dl Protein in the Cyanobacterium Synechococcus. The EMBO Journal 14: 5457-5466.

Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y., and Kim, I.S. (2009) Effect of Different Substrates on the Performance, Bacterial Diversity, and Bacterial Viability in Microbial Fuel Cells. Bioresource Technology 100: 3518-3525.

Chaudhuri, S.K., and Lovley, D.R. (2003) Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat Biotechnol 21: 1229-1231.

Chen, C.H., Chien, C.Y., and Huang, T.C. (1996) Regulation and Molecular Structure of a Circadian Oscillating Protein Located in the Cell Membrane of the Prokaryote Synechococcus Rf-1. Planta 199: 520-527.

Cheng, S., Liu, H., and Logan, B.E. (2006) Increased Performance of Single-Chamber Microbial Fuel Cells Using an Improved Cathode Structure. Electrochemistry Communications 8: 489-494.

Davis, F., and Higson, S.P.J. (2007) Biofuel Cells—Recent Advances and Applications. Biosensors and Bioelectronics 22: 1224–1235.

De Schamphelaire, L., Bossche, L.V.d., Dang, H.S., Höfte, M., Boon, N., Rabaey, K., and Verstraete, W. (2008) Microbial Fuel Cells Generating Electricity from Rhizodeposits of Rice Plants. Environ. Sci. Technol 42: 3053–3058.

Ditzig, J., Liu, H., and Logan, B.E. (2007) Productions of Hydrogen from Domestic Wastewater Using a Bioelectrochemically Assisted Microbial Reactor (Beamr). International Journal of Hydrogen Energy 32: 2296-2304.

Du, Z., Li, H., and Gu, T. (2007) A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnology Advances 25: 464-482.

Feng, C., Ma, L., Li, F., Mai, H., Lang, X., and Fan, S. (2010) A Polypyrrole/Anthraquinone-2,6-Disulphonic Disodium Salt (Ppy/Aqds)
-Modified Anode to Improve Performance of Microbial Fuel Cells. Biosensors and Bioelectronics 25: 1516-1520.

Ferris, M.J., and Hirsch, C.F. (1991) Method for Isolation and Purification of Cyanobacteria. Appl Environ Microbiol 57: 1448-1452.

Fu, C.C., Su, C.H., Hung, T.C., Hsieh, C.H., Suryani, D., and Wu, W.T. (2009) Effects of Biomass Weight and Light Intensity on the Performance of Photosynthetic Microbial Fuel Cells with Spirulina Platensis. Bioresource Technology 100: 4183-4186.

Garczarek, L., Dufresne, A., Blot, N., Cockshutt, A.M., Peyrat, A., Campbell, D.A., Joubin, L., and Six, C. (2008) Function and Evolution of the Psba Gene Family in Marine Synechococcus: Synechococcus sp. Wh7803 as a Case Study. ISME J 2: 937-953.

Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.K., Park, H.S., and Kim, H.J. (2003) Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell. Biosensors and Bioelectronics 18: 327-334.

Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S.i., Logan, B., Nealson, K.H., and Fredrickson, J.K. (2006) Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain Mr-1 and Other Microorganisms. Proceedings of the National Academy of Sciences 103: 11358-11363.

Grobbelaar, N., Huang, T.C., Lin, H.Y., and Chow, T.J. (1986) Dinitrogen-Fixing Endogenous Rhythm in Synechococcus Rf-1. FEMS Microbiology Letters 37: 173-177.

Grove, W.R. (1852) On the Electro-Chemical Polarity of Gases. Philosophical Transactions of the Royal Society of London 142: 87-101.

He, Z., Huang, Y., Manohar, A.K., and Mansfeld, F. (2008) Effect of Electrolyte PH on the Rate of the Anodic and Cathodic Reactions in an Air-Cathode Microbial Fuel Cell. Bioelectrochemistry 74: 78-82.

He, Z., Kan, J., Mansfeld, F., Angenent, L.T., and Nealson, K.H. (2009) Self-Sustained Phototrophic Microbial Fuel Cells Based on the Synergistic Cooperation between Photosynthetic Microorganisms and Heterotrophic Bacteria. Environ. Sci. Technol 43: 1648-1654.

Hong, S.W., Chang, I.S., Choi, Y.S., and Chung, T.H. (2009) Experimental Evaluation of Influential Factors for Electricity Harvesting from Sediment Using Microbial Fuel Cell. Bioresource Technology 100: 3029-3035.

Huang, J., Sun, B., and Zhang, X. (2010) Electricity Generation at High Ionic Strength in Microbial Fuel Cell by a Newly Isolated Shewanella Marisflavi Ep1. Applied Microbiology and Biotechnology 85: 1141-1149.

Huang, T.C., Tu, J., Chow, T.J., and Chen, T.H. ( 1990) Circadian Rhythm of the Prokaryote Synechococcus sp. Rf-1. Plant Physiol 92: 531-533.

Ieropoulos, I.A., Greenman, J., Melhuish, C., and Hart, J. (2005) Comparative Study of Three Types of Microbial Fuel Cell. Enzyme and Microbial Technology 37: 238-245.

Iimura, M., Nakamura, T., Shinozaki, S., Iizuka, B., Inoue, Y., Suzuki, S., and Hayashi, N. (2000) Bax Is Downregulated in Inflamed Colonic Mucosa of Ulcerative Colitis. Gut 47: 228-235.

Jöhren, O., Neidert, S.J., Kummer, M., Dendorfer, A., and Dominiak, P. (2001) Prepro-Orexin and Orexin Receptor Mrnas Are Differentially Expressed in Peripheral Tissues of Male and Female Rats. Endocrinology 142: 3324-3331.

Jong, B.C., Kim, B.H., Chang, I.S., Liew, P.W.Y., Choo, Y.F., and Kang, G.S. (2006) Enrichment, Performance, and Microbial Diversity of a Thermophilic Mediatorless Microbial Fuel Cell. Environ. Sci. Technol 40: 6449-6454.

Kühl, M., Chen, M., Ralph, P.J., Schreiber, U., and Larkum, A.W.D. (2005) A Niche for Cyanobacteria Containing Chlorophyll D. Nature 433.

Kaku, N., Yonezawa, N., Kodama, Y., and Watanabe, K. (2008) Plant/Microbe Cooperation for Electricity Generation in a Rice Paddy Field. Applied Microbiology and Biotechnology 79: 43-49.

Kallas, T., and Castenholz, R.W. (1981) Internal Ph and Atp-Adp Pools in the Cyanobacterium Synechococcus sp. During Exposure to Growth-Inhibiting Low pH. Journal of Bacteriology 149: 229-236.

Kim, I.S., Chae, K.J., Choi, M.J., and Verstraete, W. (2008) Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environ. Eng. Res. 13: 51-65.

Klein, D. (2002) Quantification Using Real-Time Pcr Technology: Applications and Limitations. TRENDS in Molecular Medicine 8: 257-260.

Kondo, T., Strayer, C.A., Kulkarni, R.D., Taylor, W., Ishiura, M., Golden, S.S., and Johnson, C.H. (1993) Circadian Rhythms in Prokaryotes: Luciferase as a Reporter of Circadian Gene Expression in Cyanobacteria. Proc. Natl. Acad. Sci. USA 90: 5672-5676.

Kulkarni, R.D., and Golden, S.S. (1994) Adaptation to High Light Intensity in Synechococcus sp. Strain PCC 7942: Regulation of Three Psba Genes and Two Forms of the D1 Protein. Journal of Bacteriology 176: 959-956.

Kutschera, U., and Niklas, K.J. (2005) Endosymbiosis, Cell Evolution, and Speciation. Theory Biosci 124: 1-24.

Lin, R.F., Chou, H.M., and Huang, T.C. (1999) Priority of Light/Dark Entrainment over Temperature in Setting the Circadian Rhythms of Prokaryote Synechococcus Rf-1. Planta 209: 202-206.

Liu, H., Ramnarayanan, R., and Logan, B.E. (2004) Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ Sci Technol 38: 2281-2285.

Liu, H., Cheng, S., and Logan, B.E. (2005) Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environ. Sci. Technol. 39: 5488-5493.

Logan, B.E. (2005) Simultaneous Wastewater Treatment and Biological Electricity Generation. Water Science & Technology 52: 31-37.

Lovley, D.R. (2006) Bug Juice: Harvesting Electricity with Microorganisms. Nat Rev Microbiol 4: 497-508.

Lovley, D.R. (2008) The Microbe Electric: Conversion of Organic Matter to Electricity. Curr Opin Biotechnol 19: 564-571.

Lu, N., Zhou, S.G., Zhuang, L., Zhang, J.T., and Ni, J.R. (2009) Electricity Generation from Starch Processing Wastewater Using Microbial Fuel Cell Technology. Biochemical Engineering Journal 43: 246-251.

Luimstra, V.M., Kennedy, S.J., Güttler, J., Wood, S.A., Williams, D.E., and Packer, M.A. (2014) A Cost-Effective Microbial Fuel Cell to Detect and Select for Photosynthetic Electrogenic Activity in Algae and Cyanobacteria. Journal of Applied Phycology 26: 15-23

Madiraju, K.S., Lyew, D., Kok, R., and Raghavan, V. (2012) Carbon Neutral Electricity Production by Synechocystis sp. PCC 6803 in a Microbial Fuel Cell. Bioresour Technol. 110: 214-218.

Malik, S., Drott, E., Grisdela, P., Lee, J., Lee, C., Lowy, D.A., Gray, S., and Tender, L.M. (2009) A Self-Assembling Self-Repairing Microbial Photoelectrochemical Solar Cell. Energy & Environmental Science 2: 292-298.

Mereschkowsky, C. (1902) Xxx.—on Sellaphora, a New Genus of Diatoms. Journal of Natural History Series 79: 185-195.

Miller, A.G., Turpin, D.H., and Canvin, D.T. (1984) Growth and Photosynthesis of the Cyanobacterium Synechococcus Leopoliensis in HCO3-Limited Chemostats. Plant Physiol. 75: 1064-1070.

Min, B., and Logan, B.E. (2004) Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ Sci Technol. 38: 5809-5814.

Min, B., Roman, O.B., and Angelidaki, I. (2008) Importance of Temperature and Anodic Medium Composition on Microbial Fuel Cell (MFC) Performance. Biotechnol Lett 30: 1213-1218.

Mohan, Y., and Das, D. (2009) Effect of Ionic Strength, Cation Exchanger and Inoculum Age on the Performance of Microbial Fuel Cells. International Journal of Hydrogen Energy 34: 7542-7546.

Mori, T., and Johnson, C.H. (2001) Circadian Programming in Cyanobacteria. Semin Cell Dev Biol 12: 271-278.

Niessen, J., Schröder, U., Harnisch, F., and Scholz, F. (2005) Gaining Electricity from in Situ Oxidation of Hydrogen Produced by Fermentative Cellulose Degradation. Letters in Applied Microbiology 41: 286-290.

Nishio, K., Hashimoto, K., and Watanabe, K. (2013) Light/Electricity Conversion by Defined Cocultures of Chlamydomonas and Geobacter. J Biosci Bioeng 115: 412-417.

Park, D.H., Kim, S.K., Shin, I.H., and Jeong, Y.J. (2000) Electricity Production in Biofuel Cell Using Modified Graphite Electrode with Neutral Red. Biotechnology Letters: 1301–1304.

Pisciotta, J.M., Zou, Y., and Baskakov, I.V. (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. Plos One 5.

Pisciotta, J.M., Zou, Y., and Baskakov, I.V. (2011) Role of the Photosynthetic Electron Transfer Chain in Electrogenic Activity of Cyanobacteria. Applied Microbiology and Biotechnology 91: 377-385.

Potter, M.C. (1911) Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of aBiological Character 84: 260-276.

Rabaey, K., Lissens, G., Siciliano, D.S., and Verstraete, W. (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters 25: 1531-1535

Rabaey, K., and Verstraete, W. (2005) Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends Biotechnol 23: 291-298.

Regan, J.M., and Logan, B.E. (2006) Electricity-Producing Bacterial Communities in Microbial Fuel Cells. Trends in Microbiology 40: 512-518.

Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular Electron Transfer Via Microbial Nanowires. Nature 435: 1098-1101.

Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., and Lovley, D.R. (2006) Biofilm and Nanowire Production Leads to Increased Current in Geobacter Sulfurreducens Fuel Cells. Applied and Environmental Microbiology 72: 7345-7348.

Ren, Z., Ward, T.E., and Regan, J.M. (2007) Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture. Environ Sci Technol. 41: 4781-4786.

Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiozogy: 1-61.

Rozendal, R.A., Hamellers, H.V.M., and Buisman, C.J. (2006) Effects of Membrane Cation Transport on Ph and Microbial Fuel Cell Performance 40: 5206-5211.

Rozendal, R.A., Hamelers, H.V., Rabaey, K., Keller, J., and Buisman, C.J. (2008) Towards Practical Implementation of Bioelectrochemical Wastewater Treatment. Trends Biotechnol 26: 450-459.

Sell, D., Krämer, P., and Kreysa, G. (1989) Use of an Oxygen Gas Diffusion Cathode and a Three-Dimensional Packed Bed Anode in a Bioelectrochemical Fuel Cell. Applied Microbiology and Biotechnology 31: 211-213.

Shukla, A.K., Suresh, P., Berchmans, S., and Rajendran, A. (2004) Biological Fuel Cells and Their Applications. current science 87: 455-469.

Strik, D.P., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., and Buisman, C.J. (2011) Microbial Solar Cells: Applying Photosynthetic and Electrochemically Active Organisms. Trends Biotechnol 29: 41-49.

Swingley, W.D., Chen, M., Cheung, P.C., Conrad, A.L., Dejesa, L.C., Hao, J., Honchak, B.M., Karbach, L.E., Kurdoglu, A., Lahiri, S., Mastrian, S.D., Miyashita, H., Page, L., Ramakrishna, P., Satoh, S., Sattley, W.M., Shimada, Y., Taylor, H.L., Tomo, T., Tsuchiya, T., Wang, Z.T., Raymond, J., Mimuro, M., Blankenship, R.E., and Touchman, J.W. (2008) Niche Adaptation and Genome Expansion in the Chlorophyll D-Producing Cyanobacterium Acaryochloris Marina. Proc Natl Acad Sci USA 105: 2005-2010.

Tanaka, K., Tamamushi R., and T., O. (1985) Bioelectrochemical Fuel-Cell Operated by the Cyanobacterium, Anabaena Variabilis. Chemical Technology and Biotechnology 35: 191-197.

Torres, C.I., Marcus, A.K., and Rittmann, B.E. (2008) Proton Transport inside the Biofilm Limits Electrical Current Generation by Anode-Respiring Bacteria. Biotechnol Bioeng 100: 872-881.

Tsinoremas, N.F., Schaefer, M.R., and Golden, S.S. (1994) Blue and Red Light Reversibly Control Psba Expression in the Cyanobacterium Synechococcus sp. Strain PCC 7942. The Journal of Biological Chemistry 26: 16143-16147.

Vedernikov, Y.P., Betancourt, A., Wentz, M.J., Saade, G.R., and Garfield, R.E. (2006) Adaptation to Pregnancy Leads to Attenuated Rat Uterine Artery Smooth Muscle Sensitivity to Oxytocin. American journal of obstetrics and gynecology 194: 252-260.

Vermaas, W. (1998) An Introduction to Photosynthesis and Its Applications. The World & I: 158-165.

Waterbury, J.B., Watson, S.W., Guillard, R.R.L., and Brand, L.E. (1979) Widespread Occurrence of a Unicellular, Marine, Planktonic, Cyanobacterium. Nature 277: 293-294.

Yagishita, T., Sawayama, S., Tsukahara, K.I., and Ogi, T. (1997) Effects of Intensity of Incident Light and Concentrations of Synechococcus sp. And 2-Hydroxy-1,4-Naphthoquinone on the Current Output of Photosynthetic Electrochemical Cell. Solar Energy 6: 347–353.

Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., and Herrmann, I. (2005) Application of Pyrolysed Iron(Ii) Phthalocyanine and Cotmpp Based Oxygen Reduction Catalysts as Cathode Materials in Microbial Fuel Cells. Electrochemistry Communications 7: 1405-1410.

Zou, Y., Pisciotta, J., Billmyre, R.B., and Baskakov, I.V. (2009) Photosynthetic Microbial Fuel Cells with Positive Light Response. Biotechnol Bioeng 104: 939-946.

BP Global (2013) BP Statistical Review of World Energy
URL http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical_review_of_world_energy_2013.pdf

U.S. Energy Information Administration (2015) Annual
Energy Outlook 2015
URL http://www.eia.gov

David R. (2007) Structure of chlorophyll a & d
URL https://en.wikipedia.org/wiki/Chlorophyll
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳東野,1996,(「單一選區兩票制」選舉方法探討---德國、日本、俄羅斯之實例比較)《選舉研究》第三卷,第一期,頁69-102,台北:台北國立政治大學選舉研究中心。
2. 高永光,1998,〈政黨競爭與政黨聯合:議題取向的分析〉,《理論與政策》,第12卷第2期,頁157-173,台北:台北國立政治大學選舉研究中心。
3. 林秀純、徐亞瑛(1998)。失能老人家庭照顧者之照顧回饋與負荷及相關因素探討。長庚護理,9(2),1-11。
4. 林麗嬋、歐美、吳肖琪(1997)。長期照護中主要照顧者之家庭功能、社會支持與情緒。護理研究,5(1),77-87。
5. 林秀純、徐亞瑛、姚開屏、吳淑瓊(1999)。台灣北部地區失能老人家庭照顧品質及相關因素之探討。護理研究,7(1),15-27。
6. 黃照貴、張海青,2000,(全球資訊網策略聯盟運用發展之研究)《中華管理評論》,第三卷,第一期, 頁59-73,台北:中華管理學會。
7. 徐亞瑛(1996)。茁根理論介紹─以「台灣地區殘病老人家庭照護品質」研究為例。護理研究,4(3),263-271。
8. 陳世敏,1991,〈民意調查與台灣的民主化:以施政滿意程度和公眾人物的聲望調查為例〉,《新聞學研究》,第45期,台北:台北國立政治大學選舉研究中心。
9. 徐亞瑛、張媚、楊玉玫、黃久美(1992)。都市型及鄉村型社區中居家殘病老人照顧者之負荷及相關因素。護理雜誌,39(3),99-106。
10. 游清鑫,2002,〈選戰策略:2001年選舉的總體觀察〉,《國家政策論壇》,第2卷,第1期,頁12-19,台北:台北國立政治大學選舉研究中心。
11. 徐畢卿(1996)。阿茲海默氏痴呆症之探討。護理雜誌,43(4),67-73。
12. 游清鑫,2000,(選舉策略的個案研究:1998年民進黨台北市南區立法委員選舉的探討)《選舉研究》第六卷,第二期,頁163-190,台北:台北國立政治大學選舉研究中心。
13. 張文芸(1996)。痴呆症老人問題行為的認識。護理雜誌,43(4),85-91。
14. 游清鑫,1996,(選舉制度、選舉競爭與選舉策略:八十四年北市南區立委選舉之個案研究)《選舉研究》第三卷,第一期,頁137-178,台北:台北國立政治大學選舉研究中心。
15. 彭泗清、楊中芳(1999)。交往關係的影響因素與發展過程。本土心理學研究,12,291-312。