跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:章詩函
研究生(外文):Shih-Han Chang
論文名稱:暖暖包回收鐵製備Fe-TiO2應用於可見光降解染料AR27之研究
論文名稱(外文):Preparation of Fe-TiO2 from recycling hand warmer and its applicability on photocatalytic degradation of dye Acid Red 27 under visible light
指導教授:謝永旭謝永旭引用關係
指導教授(外文):Yung-Hsu Hsieh
口試委員:吳志超張禎祐
口試日期:2015-05-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:暖暖包AR27Fe-TiO2可見光
外文關鍵詞:Hand warmerAcid Red 27Fe-TiO2Visible light
相關次數:
  • 被引用被引用:1
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試回收廢棄暖暖包之鐵以溶膠凝膠法製備Fe-TiO2,而後藉由在可見光下降解染料AR27之效果,瞭解其光催化效能。其中以鐵鈦莫爾百分比來表示鐵添加的比例,分別為0.05、0.1、0.25、0.5、1 mole%,再選用三種不同溫度鍛燒(500、600、700 ℃),合成之觸媒藉由FE-SEM、XRD、UV-Vis、BET、ESCA、Zeta potential觀察其特性之差異,本實驗控制四種操作參數,分別為不同鐵添加比例、鍛燒溫度、pH值、染料初始濃度,藉由實驗結果找出最佳的操作參數後,則進行觸媒可重複使用次數之探討,最後以脫附實驗了解觸媒是否在可見光下具有光催化效果。
由觸媒特性分析結果得知,鐵添加比例0.1 mole%並以500 ℃鍛燒之觸媒其形狀為長條狀並且有較大之比表面積,晶型主要以銳鈦礦為主,並且零電位點pH為5.6,另外,鐵是以三價鐵之型式存在於觸媒中,實際鐵添加比例與理論值有相符合之趨勢,而當鐵添加比例增加時,能隙隨之遞減,並且吸收波長紅移至可見光範圍。
光催化實驗結果顯示,鐵添加比例為0.1 mole%時,有最佳之光催化效果,而在不同鍛燒溫度實驗中,則以500 ℃為較佳之熱處理溫度,於不同染料pH值實驗中,則以pH=3時有最佳之處理效果。觸媒處理效果隨染料濃度提升而下降,因此以10 mg/L進行後續實驗。觸媒重複使用實驗結果顯示,當觸媒重複使用達4次時色度去除效果仍可達89 %。綜合以上結果以及脫附實驗結果證實,以廢棄暖暖包回收鐵所製備之Fe-TiO2在可見光下對於染料AR27色度去除具有良好之能力。
In this study, preparation of Fe-TiO2 was synthesized by sol-gel method using tetraisopropoxide (TTIP) and the iron of hand warmer as precursors. The manipulation parameters including different calcination temperatures(500 °C,600 °C and 700 °C), Fe:Ti molar ratios (0.05 %, 0.1 %, 0.25 % 0.5 % and 1 %), the pH value (3, 5.5, 9) and concentration of AR27 (10 mg/L, 20 mg/L, 30 mg/L) were evaluated by photodegradation of Acid Red 27 under visible light. Reusability of the catalyst was investigated by the optimal operating parameters. Desorption experiments were conducted to understand the photodegradation efficiency of catalyst under visibe light. Characterization of prepared catalysts by FE-SEM, HR-XRD, BET, ESCA, Zeta potential, UV-Vis was investigated.
Fe:Ti molar ratio 0.1 mole% calcined at 500 °C showed strip shape with high surface area .Crystal structure exhibited anatase phase and pHzpc was 5.6. The ESCA provided evidence for Fe3+ surface species in the Fe-TiO2. There were the same trend between actual proportion of iron-doped and theoretical values. The band gap decreased as the amount of iron increased and shifted the absorbance edge to the visible light region.
The results demonstrated that the best photodegradation efficiency was 0.1 mole% Fe-TiO2 calcined at 500 °C under the conditon of 10 mg/L dye concentation at pH 3. The color removal efficiency kept 89 % after catalyst used for 4 times. It was proved accroding to the prvious and desorption experiment results that preparation of Fe-TiO2 from recyled hand warmer showed great decolorization efficiency for AR27 under visibe light.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 3
2-1 染整廢水概述 3
2-1-1染整廢水介紹 3
2-1-2染整廢水處理技術 5
2-1-3各國染整業廢水管制標準 9
2-2 染料概述 11
2-2-1 AR27基本特性 11
2-2-1 AR27降解機制 12
2-3 二氧化鈦概述 15
2-3-1二氧化鈦基本特性 15
2-3-2二氧化鈦製備技術 17
2-4 二氧化鈦改質 23
2-4-1過渡金屬改質 23
2-4-2貴重金屬改質 25
2-4-3非金屬改質 27
2-5 光催化反應 28
2-5-1二氧化鈦光催化反應機制 28
2-5-2鐵改質二氧化鈦反應機制 29
2-5-3鐵改質二氧化鈦光催化降解染料相關文獻 31
第三章 實驗方法與設備 32
3-1 實驗架構 32
3-2 實驗藥品 33
3-3 實驗設備與分析儀器 34
3-4 實驗內容與方法 36
3-4-1暖暖包回收鐵實驗 36
3-4-2光觸媒製備 37
3-4-3光催化實驗 38
3-5 分析項目及方法 42
3-5-1觸媒特性分析 42
3-5-2水樣品分析 46
第四章 結果與討論 48
4-1 光觸媒特性分析 48
4-1-1場發射掃描式電子顯微鏡 48
4-1-2比表面積分析儀 59
4-1-3高解析X光繞射分析 60
4-1-4化學分析電子能譜儀 67
4-1-5 ICP元素分析 76
4-1-6紫外光/可見光吸收光譜分析 77
4-1-7界達電位分析 79
4-2 前置實驗 80
4-2-1背景實驗 80
4-2-2直接光解實驗 81
4-3 光催化實驗 82
4-3-1不同鐵比例TiO2光催化活性 82
4-3-2不同鍛燒溫度Fe-TiO2光催化活性 85
4-3-3不同染料初始pH值光催化活性 87
4-3-4不同染料初始濃度光催化活性 89
4-4 觸媒重複使用試驗 91
4-5 脫附試驗 93
第五章 結論與建議 94
5-1 結論 94
5-2 建議 95
參考文獻 96
附錄 105
1.中文部分
 (1) 圖書
經濟部工業局(2011)產業節水與水再生技術手冊
 (2) 中文論文
林晏寧(2014),汙泥回收製備二氧化鈦及其應用於光催化降解染料
AR27之研究,碩士論文,國立中興大學環境工程學系。
沈善鎰(2013),摻雜過渡金屬之觸媒電極於表面特性及電觸媒效應 之研究,博士論文,國立中興大學環境工程學系
許明琮(2005),射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜 之研究,工業化學與災害防治研究所。
郭柏成(2010),應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光
觸媒之丙酮分解研究,碩士論文,國立中山大學環境工程研究所
 (3) 網路資源
台灣區棉布印染整理工業同業公會http://www.prtdyeing.org.tw/news/index.php?mode=data&id=653
2.英文部分
Ahmed M. A., El-Katori E. E. & Gharni Z. H. (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. Journal of Alloys and Compounds, 553, 19-29.
Akbari A., Desclaux S., Rouch J. C., Aptel P. & Remigy J. C. (2006) New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. Journal of Membrane Science, 286, 342-350.
Alinsafi A., da Motta M., Le Bonté S., Pons M. N. & Benhammou A. (2006) Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes and Pigments, 69, 31-39.
Balapure K., Bhatt N. & Madamwar D. (2014) Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour Technology, 175C, 1-7.
Basturk E. & Karatas M. (2015) Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72.
Behnajady M. A., Modirshahla N., Daneshvar N. & Rabbani M. (2007) Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chemical Engineering Journal, 127, 167-176.
Bonakdarpour B., Vyrides I. & Stuckey D. C. (2011) Comparison of the performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. International Biodeterioration & Biodegradation, 65, 591-599.
Byrappa K. & Adschiri T. (2007) Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 53, 117-166.
Carp O. (2004) Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177.
Colindres P., Yee-Madeira H. & Reguera E. (2010) Removal of Reactive Black 5 from aqueous solution by ozone for water reuse in textile dyeing processes. Desalination, 258, 154-158.
Daneshvar N., Rabbani M., Modirshahla N. & Behnajady M. A. (2004) Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. Journal of Photochemistry and Photobiology A: Chemistry, 168, 39-45.
Devi L. G., Kottam N., Murthy B. N. & Kumar S. G. (2010) Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. Journal of Molecular Catalysis A: Chemical, 328, 44-52.
Gül Ş. & Özcan-Yıldırım Ö. (2009) Degradation of Reactive Red 194 and Reactive Yellow 145 azo dyes by O3 and H2O2/UV-C processes. Chemical Engineering Journal, 155, 684-690.
Ghasemi S., Rahimnejad S., Setayesh S. R., Rohani S. & Gholami M. R. (2009) Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J Hazard Mater, 172, 1573-1578.
Ghorai T. K., Biswas S. K. & Pramanik P. (2008) Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO2 nanophotocatalyst prepared by novel chemical method. Applied Surface Science, 254, 7498-7504.
Hai F. I., Yamamoto K. & Fukushi K. (2007) Hybrid Treatment Systems for Dye Wastewater. Critical Reviews in Environmental Science and Technology, 37, 315-377.
Hampden-Smith M. J. & Kodas T. T. (1995) Chemical vapor deposition of metals: Part 1. An overview of CVD processes. Chemical Vapor Deposition, 1, 8-23.
Ho W., Yu J. C. & Lee S. (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 179, 1171-1176.
Inturi S. N. R., Boningari T., Suidan M. & Smirniotis P. G. (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Applied Catalysis B: Environmental, 144, 333-342.
Konsowa A. H. (2003) Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158, 233-240.
Ledakowicz S., Solecka M. & Zylla R. (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175-184.
Lee D.-S. & Chen Y.-W. (2014) Nano Ag/TiO2 catalyst prepared by chemical deposition and its photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 45, 705-712.
Lei X. F., Xue X. X., Yang H., Chen C., Li X., Niu M. C., Gao X. Y. & Yang Y. T. (2015) Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Applied Surface Science, 332, 172-180.
Liang W., Li J. & Jin Y. (2012) Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Building and Environment, 51, 345-350.
Liu K.-I., Hsueh Y.-C., Su C.-Y. & Perng T.-P. (2013) Photoelectrochemical application of mesoporous TiO2/WO3 nanohoneycomb prepared by sol–gel method. International Journal of Hydrogen Energy, 38, 7750-7755.
Ma J., Wei Y., Liu W.-X. & Cao W.-B. (2009) Preparation of nanocrystalline Fe-doped TiO2 powders as a visible-light-responsive photocatalyst. Research on Chemical Intermediates, 35, 329-336.
Medina-Ramírez I., Liu J. L., Hernández-Ramírez A., Romo-Bernal C., Pedroza-Herrera G., Jáuregui-Rincón J. & Gracia-Pinilla M. A. (2014) Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. Journal of Materials Science, 49, 5309-5323.
Mizukoshi Y., Makise Y., Shuto T., Hu J., Tominaga A., Shironita S. & Tanabe S. (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics Sonochemistry, 14, 387-392.
Nawaz M. S. & Ahsan M. (2014) Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 53, 717-722.
Okamoto K.-i., Yamamoto Y., Tanaka H. & Itaya A. (1985) Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder. Bulletin of the Chemical Society of Japan, 58, 2023-2028.
Ou H. & Lo S. (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 58, 179-191.
Patel H. & Vashi R.T. (2010) Treatment of Textile Wastewater by Adsorption and Coagulation. E-Journal of Chemistry, 7, 1468-1476
Pozan G. S., Isleyen M. & Gokcen S. (2013) Transition metal coated TiO2 nanoparticles: Synthesis, characterization and their photocatalytic activity. Applied Catalysis B: Environmental, 140-141, 537-545.
Qi B., Yu Y., He X., Wu L., Duan X. & Zhi J. (2012) Series of transition metal-doped TiO2 transparent aqueous sols with visible-light response. Materials Chemistry and Physics, 135, 549-553.
Rauf M. A., Meetani M. A. & Hisaindee S. (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276, 13-27.
Robinson T., McMullan G., Marchant R. & Nigam P. (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247-255.
Rosa J. M., Fileti A. M. F., Tambourgi E. B. & Santana J. C. C. (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by Ultraviolet / Hydrogen peroxide homogeneous photocatalysis. Journal of Cleaner Production, 90, 60-65.
Safari M., Talebi R., Rostami M. H., Nikazar M. & Dadvar M. (2014) Synthesis of iron-doped TiO2 for degradation of reactive Orange16. Journal of Environmental Health Science and Engineering, 12, 19-19.
Saratale R. G., Saratale G. D., Chang J. S. & Govindwar S. P. (2011) Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
Sirianuntapiboon S. & Sansak J. (2008) Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes. Journal of Hazard Mater, 159, 404-11.
Tang W., Chen X., Xia J., Gong J. & Zeng X. (2014) Preparation of an Fe-doped visible-light-response TiO2 film electrode and its photoelectrocatalytic activity. Materials Science and Engineering: B, 187, 39-45.
Tian H., Ma J., Li K. & Li J. (2009) Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceramics International, 35, 1289-1292.
Vallejo W., Diaz-Uribe C. & Cantillo Á. (2015) Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 299, 80-86.
Vargas X., Tauchert E., Marin J.-M., Restrepo G., Dillert R. & Bahnemann D. (2012) Fe-doped titanium dioxide synthesized: Photocatalytic activity and mineralization study for azo dye. Journal of Photochemistry and Photobiology A: Chemistry, 243, 17-22.
Wan L., Gao Y., Xia X.-H., Deng Q.-R. & Shao G. (2011) Phase selection and visible light photo-catalytic activity of Fe-doped TiO2 prepared by the hydrothermal method. Materials Research Bulletin, 46, 442-446.
Wang F., Shi Z., Gong F., Jiu J. & Adachi M. (2007) Morphology Control of Anatase TiO2 by Surfactant-assisted Hydrothermal Method. Chinese Journal of Chemical Engineering, 15, 754-759.
Wantala K., Laokiat L., Khemthong P., Grisdanurak N. & Fukaya K. (2010) Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 41, 612-616.
Wong M.-S., Pang Chou H. & Yang T.-S. (2006) Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films, 494, 244-249.
Wu Y., Zhang J., Xiao L. & Chen F. (2010) Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Applied Surface Science, 256, 4260-4268.
Zheng X.-J., Wei L.-F., Zhang Z.-H., Jiang Q.-J., Wei Y.-J., Xie B. & Wei M.-B. (2009) Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. International Journal of Hydrogen Energy, 34, 9033-9041.
Zhu Z. & Wu R.-J. (2014) The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. Journal of the Taiwan Institute of Chemical Engineers, 000, 1-6.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 30. 林晏州,2000,遊憩區選擇行為之研究─敘述偏好模式之應用,戶外遊憩研究,第13卷,第1期,頁63-86。
2. 26. 李銘輝、曹勝雄、張德儀,1995,遊憩據點條件對遊憩需求之影響研究,觀光研究學報,第1卷,第1期,頁25-39。
3. 27. 侯錦雄、林宗賢,1996,日月潭風景區目標市場定位策略中之旅遊意象度量探討,戶外遊憩研究,第9卷,第1期,頁57-77。
4. 31. 侯錦雄、林宗賢,2001,台東地區旅遊渡假區目標市場選擇之探討,觀光研究學報,第7卷,第1期,頁23-34。
5. 25. 顏家芝,1994,旅遊目的地選擇過程及策略之探討,戶外遊憩研究,第7卷,第1期,頁105-119。
6. 23. 鄭天爵,1993,遊憩地點的偏好與選擇行為之探討,宜蘭農工學報,第6卷,頁185-194。
7. 20. 段良雄、胡學彥,1989,遊憩區選擇之替代與互補,戶外遊憩研究,第2卷,第1期,頁41-50。
8. 19. 段良雄,遊憩需求模式,1988,戶外遊憩研究,第1卷,第4期,頁71-80。
9. 韓選棠、謝旻成(1999),德國休閒農業系列報導(6):貝根太太怎樣經營民宿,鄉間小路,25(5),68-73。
10. 22. 陳思倫、劉錦桂,1992,影響旅遊目的地選擇之地點特性及市場區隔之研究,戶外遊憩研究,第5卷,第2期,頁39-70。
11. 21. 李銘輝,1991,遊憩需求與遊客行為特性之探討,戶外遊憩研究,第4卷,第1期,頁17-33。
12. 鄭詩華(1996),農村民宿之經營及管理,戶外遊憩研究,5(3/4),13-24。
13. 高俊雄(1995),休閒利益三因素模式,戶外遊憩研究,8(1),15-28。