跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慎一
研究生(外文):Shen-Yi Chen
論文名稱:以含鋯金屬有機架構物吸附去除水中陰離子-以氟離子及磷酸二氫離子為例
論文名稱(外文):Zirconium-based Metal Organic Framework for Removal of Anions from Water - Studies of fluoride and dihydrogen phosphate ion
指導教授:林坤儀林坤儀引用關係
指導教授(外文):Kun--Yi Lin
口試委員:梁振儒劉雨庭
口試委員(外文):Chen-ju Liang
口試日期:2015-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:48
中文關鍵詞:金屬有機架構物(MOFs)吸附氟離子磷酸鹽UiO66UiO66-NH2
外文關鍵詞:metal organic frameworks(MOFs)adsorptionfluoridephosphateUiO66UiO66-NH2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
磷酸鹽及氟離子為水中常見的陰離子污染物。磷酸鹽是在放流水中最令人關注的化合物之一,容易導致水體的優養化;氟離子則是在飲用水安全中受重視的陰離子之一,本研究以金屬有機架構物 (Metal Organic Frameworks,MOFs)中,含有鋯金屬的MOFs,也就是UiO66,作為吸附材並用來去除水中的磷酸鹽及氟離子。因UiO66在水中能具有高穩定性,另外,也製備了含胺基的UiO66-NH2,以比較胺基存在與否對吸附離子效果影響。
  含鋯金屬有機架構物 (UiO MOFs) 上的鋯金屬是致使UiO MOFs吸附磷酸鹽的主因,且在吸附動力模式及等溫吸附模式佐證了在磷酸鹽吸附實驗中,帶有胺基的UiO66-NH2相較於UiO66有較佳的吸附能力,且UIO MOFs在同時具有溴酸鹽、亞硝酸鹽和硝酸鹽的競爭離子試驗當中,幾乎不會吸附溴酸鹽、硝酸鹽及亞硝酸鹽,展現了對磷酸鹽的高選擇性。此外,UiO MOFs也能完全去除在尿液中的磷酸鹽。除了UiO MOFs具有高選擇性,其亦可以容易地再生,並再次進行對磷酸鹽的吸附,數據結果顯示,吸附效果為原吸附量的85%。
  在氟離子吸附實驗中,選用了帶有胺基的UiO66-NH2作為吸附材進行氟離子的吸附,並進行動力吸附模式模擬、等溫吸附模式模擬及熱力學分析,UiO66-NH2材料的晶體結構在暴露於水及氟離子後不會有明顯的變化,UiO66-NH2吸附氟離子的動力吸附模式與擬二階模式相符,並經由等溫吸附模式模擬後可知UiO66-NH2吸附氟離子的作用為化學吸附。UiO66-NH2在pH值大於7時吸附氟離子的吸附量會減少,而水中的共存離子 (氯離子與溴離子) 對UiO66-NH2吸附氟離子的量也不會有顯著改變,離子介面活性劑則輕微影響了UiO66-NH2的吸附量,以上結果提供了含鋯金屬有機架構物能更進一步去除氟離子的重要資訊。


Phosphate and fluoride are common anions in water. Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. Fluoride is one of the most important anions in the safety of drinking water. In this study, we use metal organic frameworks (MOFs) which contain zirconium, called UiO-66 as an adsorbent to remove phosphate and fluoride from water because of its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand.
  The interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. However, the adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. It’s rarely adsorbed bromate, nitrate and nitrite. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. In addition to the high selectivity of UiO MOFs, we also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. As the result, showed that adsorption effect can reach 85% of the original adsorption ability.
  In the fluoride adsorption experiments, we selected UiO-66-NH2 which has an amine group to investigate its kinetics, adsorption isotherm and thermodynamics of fluoride adsorption. The crystalline structure of UiO-66-NH2 did not change significantly after being exposed to fluoride and water. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The analysis of the adsorption isotherm suggested that the fluoride adsorption to UiO-66-NH2 involved chemisorption. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH > 7. While the presence of chloride/bromide ions did not significant change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These results provide important information to further suggest the adsorption process for removal of fluoride using zirconium-based MOFs.


一、前言 - 1 -
1.1 緒論 - 1 -
1.2 研究動機與目的 - 2 -
二、文獻回顧 - 4 -
2.1 金屬有機架構物 (Metal Organic Frameworks,MOFs) - 4 -
2.1.1 金屬有機架構物簡介 - 4 -
2.1.2 金屬有機架構物之製備與材料特性 - 4 -
2.1.3 金屬有機架構物之應用 - 4 -
2.2 水中陰離子 - 5 -
2.2.1 水中陰離子-磷酸鹽 - 5 -
2.2.2 水中陰離子-氟離子 - 5 -
三、實驗方法 - 6 -
3.1 材料與MOF合成方法 - 6 -
3.1.1 材料 - 6 -
3.1.2 UiO66 (Zr-MOF) 合成方法 - 6 -
3.1.3 UiO66-NH2 (Zr-amino-MOF) 合成方法 - 7 -
3.2 儀器 - 8 -
3.3 吸附實驗 - 9 -
3.3.1 UiO66及UiO66-NH2對磷酸鹽的吸附實驗 - 9 -
3.3.2 UiO66及UiO66-NH2對氟離子的吸附實驗 - 9 -
3.3.3 從尿液中吸附磷酸鹽及共存離子實驗 - 10 -
3.3.4 共存離子、介面活性劑及pH值對UiO66-NH2吸附氟離子的影響 - 10 -
四、實驗結果與討論 - 11 -
4.1 UiO66和UiO66-NH2的材料特徵 - 11 -
4.1.1 UiO66和UiO66-NH2的形貌 - 11 -
4.1.2 在UiO66和UiO66-NH2上的官能基 - 12 -
4.1.3 UiO66與UiO66-NH2的漫反射光譜分析 - 13 -
4.1.4 UiO66與UiO66-NH2的化學組成 - 13 -
4.1.5 UiO66與UiO66-NH2上的鋯金屬 - 14 -
4.1.6 UiO66與UiO66-NH2的表面積與孔隙 - 15 -
4.1.7 水及氟離子對UiO66-NH2化學結構的影響 - 15 -
4.2 UiO MOFs吸附磷酸鹽實驗 - 19 -
4.2.1 固液比變化對於UiO66吸附磷酸鹽的影響 - 19 -
4.2.2 攪拌時間與溫度對於吸附磷酸鹽的影響 - 19 -
4.2.3 UiO-MOFs吸附磷酸鹽的等溫吸附模式與機制 - 22 -
4.2.4 UiO66與UiO66-NH2吸附磷酸鹽的機制 - 24 -
4.2.5 UiO MOFs對陰離子的競爭吸附 - 25 -
4.2.6 以UiO MOFs去除人體尿液 (模擬合成) 中的磷酸鹽 - 26 -
4.2.7 UiO MOFs吸附磷酸鹽後的可回收性 - 27 -
4.3 UiO MOFs吸附氟離子實驗 - 28 -
4.3.1 固液比變化對於UiO66-NH2吸附氟離子的影響 - 28 -
4.3.2 攪拌時間與溫度對於UiO66-NH2之吸附量的影響 - 29 -
4.3.3 UiO66-NH2吸附氟離子的等溫吸附模式 - 32 -
4.3.4 UiO66-NH2吸附氟離子的熱力學 - 37 -
4.3.5 pH值、共存離子與介面活性劑對UiO66-NH2吸附量之影響 - 39 -
五、結論與建議 - 42 -
5.1 結論 - 42 -
5.2 建議 - 43 -
參考文獻 - 44 -


2007. Precipitation Removal of Fluoride from Semiconductor Wastewater. Journal of Environmental Engineering 133:419-425.

Andrew Lin K-Y, Hsieh Y-T. 2015. Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. Journal of the Taiwan Institute of Chemical Engineers 50:223-228.

Asadi T, Ehsani MR, Ribeiro AM, Loureiro JM, Rodrigues AE. 2013. CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. Chemical Engineering & Technology 36:1231-1239.

Cheung WH, Szeto YS, McKay G. 2007. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology 98:2897-2904.

Clark T, Stephenson T, Pearce PA. 1997. Phosphorus removal by chemical precipitation in a biological aerated filter. Water Research 31:2557-2563.

Dura OJ, Boada R, López de la Torre MA, Aquilanti G, Rivera-Calzada A, Leon C, Chaboy J. 2013. XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia. Physical Review B 87:174109.


Garibay SJ, Cohen SM. 2010. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications 46:7700-7702.

Hamoudi S, El-Nemr A, Belkacemi K. 2010. Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di- and tri-ammonium-functionalized SBA-15. Journal of Colloid and Interface Science 343:615-621.

Han R, Han P, Cai Z, Zhao Z, Tang M. 2008. Kinetics and isotherms of Neutral Red adsorption on peanut husk. Journal of Environmental Sciences 20:1035-1041.

Horcajada P, et al. 2010. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172-178.

Hu Z, Khurana M, Seah YH, Zhang M, Guo Z, Zhao D. 2015. Ionized Zr-MOFs for highly efficient post-combustion CO2 capture. Chemical Engineering Science 124:61-69.

Huat BB, Gue SS, Ali FH. 2004. Tropical residual soils engineering. CRC Press.
Janiak C, Vieth JK. 2010. MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry 34:2366-2388.

Jung BK, Hasan Z, Jhung SH. 2013. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chemical Engineering Journal 234:99-105.
Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP. 2010a. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials 22:6632-6640.

Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud KP, Tilset M. 2010b. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry 20:9848-9851.

Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK. 2013. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 49:9449-9451.

Ke F, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F. 2011. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. Journal of Hazardous Materials 196:36-43.

Kelly S, Hesterberg D, Ravel B. 2008. Analysis of soils and minerals using X-ray absorption spectroscopy. Methods of soil analysis. Part 5:387-463.

Khan NA, Jung BK, Hasan Z, Jhung SH. 2015. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. Journal of Hazardous Materials 282:194-200.

Landry KA, Boyer TH. 2013. Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Research 47:6432-6444.
Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. 2009. Metal-organic framework materials as catalysts. Chemical Society Reviews 38:1450-1459.

Li J-R, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong H-K, Balbuena PB, Zhou H-C. 2011. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews 255:1791-1823.

Li L, Li JC, Rao Z, Song GW, Hu B. 2013. Metal Organic Framework [Cu3(BTC)2(H2O)3] for the adsorption of methylene blue from aqueous solution. Desalination and Water Treatment 52:7332-7338.

Liao X-p, Shi B. 2005. Adsorption of Fluoride on Zirconium(IV)-Impregnated Collagen Fiber. Environmental Science & Technology 39:4628-4632.

Lin K-Y, Chang H-A. 2015. Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8). Water, Air, & Soil Pollution 226 (art. 10):1-17.

Lin K-YA, Yang H, Petit C, Hsu F-K. 2014. Removing oil droplets from water using a copper-based metal organic frameworks. Chemical Engineering Journal 249:293-301.

Lounici H, Addour L, Belhocine D, Grib H, Nicolas S, Bariou B, Mameri N. 1997. Study of a new technique for fluoride removal from water. Desalination 114:241-251.



Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J. 2010. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research 44:1489-1497.

Omoike AI, vanLoon GW. 1999. Removal of phosphorus and organic matter removal by alum during wastewater treatment. Water Research 33:3617-3627.

Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X. 2008. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications:3642-3644.

Rashed MN. 2013. Adsorption technique for the removal of organic pollutants from water and wastewater. INTECH Open Access Publisher.

Ravel á, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of synchrotron radiation 12:537-541.

Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. 2011. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry – A European Journal 17:6643-6651.

Shen L, Huang L, Liang S, Liang R, Qin N, Wu L. 2014. Electrostatically derived self-assembly of NH2-mediated zirconium MOFs with graphene for photocatalytic reduction of Cr(vi). RSC Advances 4:2546-2549.

Shen L, Liang S, Wu W, Liang R, Wu L. 2013. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi). Dalton Transactions 42:13649-13657.

Solangi IB, Memon S, Bhanger M. 2009. Removal of fluoride from aqueous environment by modified Amberlite resin. Journal of Hazardous Materials 171:815-819.

Stock N, Biswas S. 2012. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 112:933-969.

Tripathy SS, Bersillon J-L, Gopal K. 2006. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separation and Purification Technology 50:310-317.

Vaaramaa K, Lehto J. 2003. Removal of metals and anions from drinking water by ion exchange. Desalination 155:157-170.

Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D. 2011. An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chemical Communications 47:1521-1523.

Wang Y, Reardon EJ. 2001. Activation and regeneration of a soil sorbent for defluoridation of drinking water. Applied Geochemistry 16:531-539.
Wu F-C, Tseng R-L, Juang R-S. 2001. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research 35:613-618.

Zang G-L, Sheng G-P, Li W-W, Tong Z-H, Zeng RJ, Shi C, Yu H-Q. 2012. Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics 14:1978-1984.

Zhang N, Yang X, Yu X, Jia Y, Wang J, Kong L, Jin Z, Sun B, Luo T, Liu J. 2014a. Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal 252:220-229.

Zhao X, Liu D, Huang H, Zhang W, Yang Q, Zhong C. 2014a. The stability and defluoridation performance of MOFs in fluoride solutions. Microporous and Mesoporous Materials 185:72-78.

Zlotea C, et al. 2011. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions 40:4879-4881.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top