跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李文英
研究生(外文):Wen-Ying Li
論文名稱:以多元醇法製備TiO2光觸媒降解AR1染料之研究
論文名稱(外文):Photocatalytic degradation of AR1 dye using TiO2 photocatalyst prepared by polyol method
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
口試委員:李文亮
口試委員(外文):Wen-Lian Lee
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:光觸媒偶氮染料二氧化鈦多元醇法
外文關鍵詞:Photocatalystazo dyestitanium dioxidepolyol method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著環保意識的抬頭,人們也愈來愈重視人體健康、地球環境和生態保護,如何有效減少污染物的產生,是現今社會重要的課題。應用於移除廢水中汙染物的去除方法主要是以光觸媒氧化法為主,而在光觸媒氧化法中,又以二氧化鈦最常被使用,這是由於二氧化鈦本身較其他光觸媒便宜、穩定、具強氧化能力、化學惰性及生物惰性。因此,本研究使用多元醇法製備二氧化鈦光觸媒,並探討以多元醇法製備奈米粉體的製程參數及不同鍛燒溫度對型態結構及分解偶氮染料之影響。
本實驗中,在製程中添加TTIP做為前驅物,並以PVP做為保護劑,探討不同鍛燒溫度及在不同的pH值條件下,以改變TiO2光觸媒的晶相組成與晶粒尺寸,與目標汙染物 AR1進行光催化反應。實驗中,將以TGA、XRD、FE-SEM、UV/vis特性分析來協助光觸媒之物化特性分析,觀察光觸媒表面、晶相及孔洞結構等特性分析。由於二氧化鈦本身能隙為3.0~3.2 eV,其被歸類在紫外光吸收波段,因此在本實驗中探討所製備之光觸媒在紫外光(365nm)的照射之下降解染料AR1之效果。
研究結果顯示,在鍛燒T550時為最佳之脫色效果,其含銳鈦礦35%混合比例之結晶相態的二氧化鈦光觸媒,也證實二氧化鈦之混合結晶相態對光催化具有增效作用。為了進一步提升染料被分解的成效,期望使用多元醇法來合成具高分散性之TiO2觸媒,透過這樣的程序提升染料在相同反應下被分解之成效。

Owing to rising awareness of environmental protection in recent years, more and more people pay attention to the human health, global environment and ecological preservation. How to decrease pollutants effectively is an important issue nowadays. The photocatalytic oxidation is the major method for removal of pollutant from waste water. In this method, titanium dioxide(TiO2)is the most common photocatalyst to use. Because of it’s cheaper, stability, strong oxidizing ability, chemically inert and biologically inert than others. In this study, we used the polyol method to prepare TiO2, and investigate the effects of crystal phase and crystal size on the photocatalytic degradation of azo dyes by using the different preparation parameters and calcination temperature.
In this preparation process, we added TTIP as precursor and PVP as a protective agent, and used calcineration temperature to change the composition and particle size of TiO2. The obtained photocatalystwas then processed the photocatalytic reaction with target pollutant-acid red 1 (AR1). The characterization of photocatalyst was carried out by TGA, XRD, FE-SEM and UV/vis analysis to get the properties of thermal properties, crystal strucutre, morphology, and UV light adosrpiton character, respectively. TiO2 has band gaps of 3.0-3.2 eV, it’s classified to UV absorption bands. So we also assessed the photocatalyst under UV light(365nm)to decompose azo dyes(AR1).
In conclusion, calcination temperature of 550 oC is the best condition which results in the crystalline TiO2 mixed with 35% anatase and 65% rutile. This proves mixed-crystalline TiO2 results in increasing photocatalysis reactions. Therefore, polyol method could be expedted a suitable method to synthesis a high activity TiO2.


誌謝 i
摘要 ii
Abstract iii
總目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
1-1 研究緣起 1
1-2 研究動機與目的 3
1-3 研究架構 3
第二章 文獻回顧 5
2-1染料簡介 5
2-1-1染料概述 5
2-1-2染料發色原理 7
2-2染整工業廢水處理簡介 9
2-2-1染整廠的來源 9
2-2-2常見染整廢水處理方法 11
2-3 光觸媒簡介 15
2-4 二氧化鈦的基本特性 24
2-5 二氧化鈦光觸媒的改質 27
2-5-1添加金屬原子 29
2-5-2添加金屬離子 30
2-5-3添加非金屬元素 31
2-5-4表面敏化 32
2-5-5 加入其他種半導體 32
2-6光觸媒製備方法 33
2-6-1溶膠凝膠法(Sol-gel) 33
2-6-2化學氣相沉積法(Chemical Vapor Deposition, CVD) 33
2-6-3多元醇法(Polyol method) 34
2-6-4含浸法(Impregnation) 35
2-6-5 綜合比較 35
2-6文獻總結 36
第三章 實驗設備、材料及方法 38
3-1實驗之藥品及設備 38
3-1-1實驗藥品 38
3-1-2 實驗儀器及設備 39
3-2觸媒製備方法 40
3-3光降解試驗 42
3-4光觸媒鑑定分析 44
3-4-1 熱重分析儀(Thermal Gravimetric Analysis, TGA) 44
3-4-2高解析X光繞射儀(High resolution X-ray diffractometer , HRXRD) 44
3-4-3場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 45
3-4-4紫外光/可見光吸收光譜儀(UV-visible Diffuse Absorption Spectra, UV-vis) 45
3-5光催化活性測試 46
第四章 結果與討論 47
4-1 二氧化鈦光觸媒之特性分析 47
4-1-1 熱重分析 47
4-1-2 X光繞射儀分析 49
4-1-3場發射掃描式電子顯微鏡分析 52
4-1-4紫外光/可見光吸收光譜儀分析 53
4-2 不同TIO2鍛燒溫度對於AR1染料降解之影響 55
4-2-1 背景實驗 55
4-2-2反應溶液pH值之影響 56
第五章 結論與建議 59
5-1結論 59
5-2 建議 59
參考文獻 60

Arslana, I., Balcioglua, I.A., and Bahnemann, D.W., Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Applied Catalysis B: Environmental 26 (2000) 193-206.
Arunachalam, A., Dhanapandian, S., Manoharan, C., and Sivakumar, G., Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138 (2015) 105-112.
Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C., and Peringer, P., Degradation / decoloration of concentrated solutions of Orange II.Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents.Journal of Photochemistry and Photobiology A:Chemisty, 99 (1996) 57-66.
Bauer, C., Jacques, P., and Kalt, A., Photooxidation of an azo dye induced by visible light incident on the surface of TiO2, Journal of Photochemistry and Photobiology A: Chemistry 140 (2001) 87-92.
Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W. Jr, and Smith, J.V., Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, Journal of the American Chemical Society 109 (1987) 3639-3646.
Carp, O., Huismanb, C.L., and Reller, A., Photoinduced reactivity of titanium dioxide, Progress in solid state chemistry 32 (2004) 33-177.
Chatterjee, D., Dasgupta, S., N Rao, N., Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Sol Energ Mat Sol C 90, 1013-1020.
Choi, W.Y., Termin, A., and Hoffmann, M.R., Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles, Angewandte Chemie-International Edition in English 33 (1994) 1091-1092.
Chul, H.K., Hyunmin, S., Je, H.K., Woo, S.C., and Ki, H.Y., Degradation of methylene blue via photocatalysis of titanium dioxide, Materials Chemistry and Physics 86 (2004) 78-82.
Dong, W., Lee, C.W., Lu, X., Sun, Y., Hua, W., Zhang, G., Zhuang, S., Chen, J., Hou, H., and Zhao, D., Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye, Applied Catalysis B: Environmental 95 (2010) 197-207.
Duminica, F.D., Maury, F., and Hausbrand, R., N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity, Surface and Coatings Technology 201 (2007) 9349-9353.
Fenyun, Y., Shuixia, C., and Chan’e, Y., Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater, Journal of Hazardous Materials 157 (2008) 79-87.
Fujishima, A., and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, nature 238 (1972) 37-38.
Grätzel, M., Photoelectrochemical cells, Nature 414 (2001) 338-344.
Hamal, D.B., and Klabunde, K.J., Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2, Journal of Colloid and Interface Science 311 (2007) 514-522.
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Environmental applications of semiconductor photocatalysis, Chemical reviews 95 (1995) 69-96.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M., Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental 31 (2001) 145-157.
Hummel, F.A., Introduction to phase equilibria in ceramic systems, Baker & Taylor Books 39(1984).
Hung, C.H., and Mariñas, B.J., Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films, Environmental science & technology 31 (1997) 1440-1445.
Ikeda, S., Sugiyama, N., Pal, B., Marcí, G., Palmisano, L., Noguchi, H., Uosakid, K., and Ohtani, B., Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron–hole recombination kinetics, Physical Chemistry Chemical Physics 3 (2001) 267-273.
Karunakaran, C., and Anilkumar, P., Photooxidation of iodide ion on immobilized semiconductor powders, Solar Energy Materials and Solar Cells 92 (2008) 490-494.
Korzhak, A.V., Ermokhina, N.I., Stroyuk, A.L., Bukhtiyarov, V.K., Raevskaya, A.E., Litvin, V.I., Kuchmiy, S.Y., Ilyin, V.G., and Manorik, P.A., Photocatalytic hydrogen evolution over mesoporous TiO2 /metal nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry 198 (2008) 126-134.
Lin, W.J., The synthesis and properties of FePt alloy particles, National Cheng Kung University, thesis (2007).
Liu, S., Qub, Z.P., Hanb, X.W., and Sun, C.L., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catalysis Today 93 (2004) 877-884.
Lv, K., Zuo, H., Sun, J., Deng, K., Liu, S., Li, X., and Wang, D., (Bi, C and N) codoped TiO2 nanoparticles, Journal of Hazardous Materials 161 (2009) 396-401.
Mase, A., Sugita, T., Mori, M., Iwamoto, S., Tokutome, T., Katayama, K., and Itabashi, H., Study of vanadium-modified N/Si co-doped TiO2 in aqueous solution and its photocatalytic activity, Chemical Engineering Journal 225 (2013) 440-446.
Mohan, N., and Balasubramanian, N., In situ electrocatalytic oxidation of acid violet 12 dye effluent, Journal of Hazardous Materials 136 (2006) 239-243.
Nakamura, R., Tanaka, T., and Nakato, Y., Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, Journal of Physical Chemistry B 108 (2004) 10617-10620.
Panizza, M., and Cerisola, G., Electrocatalytic materials for the electrochemical oxidation of synthetic dyes, Applied Catalysis B: Environmental 75 (2007) 95-101.
San, N., Hatipoğlu, A., Koçtürk, G., and Çınar, Z., Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates, Journal of Photochemistry and Photobiology A: Chemistry 146 (2002) 189-197.
Sons, J.W., and Sze, S.M., Semiconductor Devies, Phsics and Technology, New York (1985).
Strickland, A. F., and Perkins, W.S., Decolorization of continuous dyeing wastewater by ozonation, Textile chemist and colorist 27 (1995) 11-15.
Tseng, I.H., Chang, W.C., and Wu, J.C.S., Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental 37 (2002) 37-48.
Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, Journal of Physics and Chemistry of Solids 63 (2002) 1909-1920.
Wang, K., Zhang, J., Lou, L., Yang, S., and Chen, Y., UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions, Journal of Photochemistry and Photobiology A: Chemistry 165 (2004) 201-207.
Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., and Zhan, g.J., Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films, Applied Surface Science 256 (2009) 85-89.
Zhou, M.H., and Yu, J.G., Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders, Journal of Hazardous Materials 152 (2008) 1229-1236.
Zhou, X.T., Ji, H.B., and Huang, X.J., Photocatalytic degradation of methyl orange over metalloporphyrins supported on TiO2 degussa P25, Molecules 17 (2012) 1149-1158.
李中光,ㄧ些用於去除染料之非傳統低成本吸附劑之介紹,萬能科技大學,環保簡訊(參考網址:http://setsg.ev.ncu.edu.tw/newsletter/epnews2-1-2.html)
沈善鎰,製備奈米二氧化鈦觸媒材料與應用電觸媒處理染料廢水,朝陽科技大學環境工程與管理系,碩士論文,(2008)。
林振益,以S和Zn共摻雜TiO2光觸媒在可見光下處理室內空氣污染物甲苯之研究, 國立成功大學環境工程學系,碩士論文,(2015)。
邱永亮,染料之合成與特性,徐氏基金會,(1987)。
南區奈米科技K-12教育發展中心,奈米科技-基礎、應用與實作,高立圖書有限公司,(2005)。
高濂、張青红,奈米光觸媒,五南圖書出版股份有限公司,(2004)。
張忠憲,環境與綠色化學,清華大學出版社有限公司,(2005)。
張漢昌,廢水處理,新文京圖書有限公司,(2000)。
張碩修,具可見光吸收之銅、鉻、鐵改質型 TiO2奈米光觸媒,東海大學環境科學與工程系,碩士論文,(2008)。
張歐穰,應用於可見光下分解水之 In1-xNixMO4 (M= Nb,Ta; x= 0,0.1, 0.3) 光觸媒之製備與特性研究,國立成功大學材料科學及工程學系, 碩士論文,(2005)。
陳玫瑾,以 S 摻雜 TiO2 光觸媒在可見光下處理二甲基硫之研究,國立成功大學環境工程學系,碩士論文,(2012)。
陳富亮,最新奈米光觸媒應用技術,普林斯頓國際,(2003)。
陳慧英、黃定加、朱秦億,溶膠凝膠法在薄膜製備上之應用,化工技術,無機薄膜之應用專輯 11,(1999)。
傅泀翰,以改質光觸媒處理二氯甲烷之研究,國立成功大學環境工程學系, 碩士論文,(2004) 1-95。
曾堯宜,奈米光觸媒技術發展與其應用市場範圍簡介,工研院能環所, (2004)。
黃柄橓,以可見光光觸媒對揮發性有機物之光催化研究,國立中興大學環境工程學系,碩士論文,(2008) 1-132。
黃筠雅,利用 UV/TiO2 光觸媒催化降解酸性染料 AR1 廢水之研究,國立中興大學環境工程學系,碩士論文,(2013) 1-86。
經濟部工業局,染整工業「染整業水汙染防治技術手冊」,(1994)。
詹鎮宇,多元醇法製備奈米TiO2及其晶相型態對染料降解效率之影響,中山醫學大學職業安全衛生學系,學士專題實習研究報告,(2014)。
劉瑋婷,以負載銀,銅之改質二氧化鈦結合 MCM-41 進行光催化產氫之研究,國立交通大學環境工程系,碩士論文,(2008)。
鄭智鴻,量身訂做的二氧化鈦光觸媒之合成及應用,國立成功大學化學工程學系,碩士論文,(2006) 1-75。
魏豪正,草酸於異相光催化系統降解偶氮染料之研究,國立成功大學化學工程學系,碩士論文,(2006) 1-139。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top