跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文浩
研究生(外文):Wen-Hao Lin
論文名稱:第二型胜肽精胺酸脫亞胺酶參與T細胞活化與活化後T細胞自發性死亡: 藉由內質網壓力與細胞自噬
論文名稱(外文):Peptidylarginine Deiminase 2 Dedicates T Cell Activation and Activated T Cell Autonomous Death (ACAD): Through an ER Stress and Autophagy Mechanism
指導教授:洪慧芝洪慧芝引用關係
口試委員:高銘欽劉光耀
口試日期:2015-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:77
中文關鍵詞:第二型胜肽精胺酸脫亞胺酶內質網壓力細胞自噬細胞激素活化後T細胞自發性死亡
外文關鍵詞:PADI2ER stressautophagycytokineACAD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
第二型胜肽精胺酸脫亞胺酶 (Peptidylarginine Deiminase type 2, PADI2) 主要功能為調控蛋白質轉譯後修飾,將蛋白質胜肽鏈上的精胺酸 (arginine) 轉變為瓜胺酸 (citrulline),第二型胜肽精胺酸脫亞胺酶會促使淋巴细胞中的蛋白質瓜胺酸化 (citrullinations),研究指出瓜胺酸化的蛋白質可能於發炎反應中扮演重要角色。本實驗室研究中曾發現到過度表現第二型胜肽精胺酸脫亞胺酶時,會促使活化的T細胞進行細胞凋亡 (apoptosis),此機制可能經由活化後誘發細胞死亡。本研究主要在探究第二型胜肽精胺酸脫亞胺酶參與活化後T細胞自發性死亡 (activated T cell autonomous death, ACAD)詳細機制。研究發現在Jurkat T細胞中過度表現第二型胜肽精胺酸脫亞胺酶時促使自噬作用 (autophagy) ,第二型胜肽精胺酸脫亞胺酶表現時造成細胞中的p62降解增多,同時LC3-II表現量上升,因為過度表達第二型胜肽精胺酸脫亞胺酶時會導致過多的蛋白質被瓜胺酸化,誘發內質網壓力 (ER stress) 與細胞自噬。自噬作用和細胞凋亡參與細胞對抗壓力、細胞活化及存活動態平衡。第二型胜肽精胺酸脫亞胺酶誘發第十七輔助型T (Th17) 細胞活化,刺激T細胞產生細胞激素 (cytokines),如IL-17、IL-21、IL-22和TNF mRNA表現量增高,細胞激素誘發凋亡蛋白酶的表現與凋亡蛋白酶 (caspase)活化並切割Beclin-1 形成cBeclin-1,cBeclin-1為誘發細胞凋亡的重要因子。當抑制Beclin-1的表現時,BCL-xL增加及缺乏凋亡蛋白酶,使得細胞的存活率上升。綜上所述,研究證明第二型胜肽精胺酸脫亞胺酶促使T淋巴细胞中的蛋白質瓜胺酸化、形成內質網壓力、誘發細胞自噬、細胞激素的產生與活化後T細胞自發性死亡。
Abstract
Peptidylarginine deiminase type 2 (PADI2) is a post-translational modification enzyme that catalyzes arginine residues into the citrulline residues. Previous studies have shown that PADI2 promotes protein citrullinations in lymphocytes and it might play an important role in inflammation. We found that overexpression of PADI2 promotes apoptosis in activated T cells previously. Whether PADI2 participate in the pathway of activated T cell autonomous death (ACAD) is still curious. In the delicate PADI2-mediated ACAD, we found that overexpression of PADI2 displayed higher levels of citrullinated protein which induced the ER stress significantly. The high levels of citrullinated protein results in unfolding protein response (UPR) of ER stress and increases the loading of protein degradation. Autophagy could cause degradation of the citrullinated and unfolding protein. Herein, PADI2 could enhance autophagy in Jurkat T cells and lead to a degradation of p62 and the accumulation of LC3-II. Autophagy and apoptosis are two critical mechanisms which participate against cellular stress, cell activation, survival and homeostasis. PADI2-overexpressed Jurkat T cells caused the activation of Th17 cells to increase mRNA expression of cytokines, such as IL-17, IL-21, IL-22 and TNF. Cytokines provoked caspase expression and led to caspase-mediated cleavage of Beclin-1 which was an important factor of apoptotic signaling. Knockdown of BCEN1 rescued cell survival due to the increase of Bcl-xL and the decrease of caspase-3. We suggested that PADI2 participated in the activated T cell-induced autonomous death through triggering ER stress pathway, stimulating the expression of cytokines and promoting autophagy by PADI2-citrullinated protein.
Contents iv
Abbreviation vii
中文摘要 ix
Abstract x
1. 前言 (Introduction) 1
1.1. PADI2 1
1.2. Autophagy 2
1.3. ER stress 4
1.4. Apoptosis 5
1.5. Cytokines 6
1.6. Research purpose 7
2. 材料與方法 (Materials and methods) 9
2.1. Cell culture and treatment 9
2.2. Cell transfection 9
2.3. Luciferase reporter assay 10
2.4. Detection of intracellular ROS 10
2.5. Cell vaibilty and Detection of acid vesicular organelles with acridine orange (AO) staining assay 11
2.6. DNA fragmentation analysis 11
2.7. Western Blot analysis 12
2.8. Analysis of mRNA expression by Reverse transcription PCR analysis 12
2.9. Statistical analysis 13
3. 結果 (Rusults) 14
3.1. TPA promotes PADI2 expression, autophagy, activation and apoptosis in Jurkat T lymphocytes 14
3.2. Establishment of the stable clones of PADI2 and induces cell apoptosis in Jurkat cells 14
3.3. Induction of PADI2 increased autophagy-related protein in Jurkat cell 16
3.4. PADI2 induction of ER stress-related protein by UPR inducers and suppresses phospho-mTOR, phospho-AKT in Jurkat cell 17
3.5. The shRNA-mediated inhibition of Atg5 and Atg12 promotes the cell apoptosis, and ectopic Atg12 impedes the induction of apoptosis by PADI2 overexpression 18
3.6. PADI2 overexpression induced cell activation and produced Th 17 cytokines in Jurkat cell 20
3.7. Inhibition of IL-6 prolong autophagy in Jurkat Tet-On-PADI2 cells 21
3.8. Knockdown of Beclin-1 inhibited cell death by ACAD in Jurkat Tet-On-PADI2 cells 22
3.9. Knockdown of PADI2 decrease cytokines product, inhibing autophagy and ACAD in Jurkat Tet-On-PADI2 cells 23
4. 討論 (Discussion) 24
5. 引用文獻 (References) 28
6. 圖表 (Figure) 35
Figure 1. TPA promotes PADI2 expression, autophagy, activation and apoptosis in Jurkat T lymphocytes 35
Figure 2. PADI2 overexpression increase Jurkat cells apoptosis 38
Figure 3. Induction of PADI2 results in aggregated acidic vesicular organelles and autophagy-related protein in Jurkat cell 42
Figure 4. PADI2 induction of ER stress-related proteins and suppresses phospho-mTOR, phospho-AKT by UPR inducers in Jurkat cell 47
Figure 5. Knockdown of Atg5 and Atg12 induced cell death in Jurkat Tet-On PADI2 cells 50
Figure 6. Overexpression of Atg12 delays apoptosis induced by PADI2. 57
Figure 7. PADI2 overexpression induced inflammatory cytokines in Jurkat cell 60
Figure 8. Knockdown IL-6 delayed apoptosis and prolong autophagy in Jurkat PADI2 cells 62
Figure 9. Knockdown of Beclin-1 increased survival in Jurkat-Tet-On-PADI2 cells 64
Figure 10. PADI2 deficiency promoted surveil and regulated ER stress and autophagy. 67
1.Vossenaar ER, Nijenhuis S, Helsen MM, van der Heijden A, Senshu T, van den Berg WB, van Venrooij WJ, Joosten LA. Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis and rheumatism 2003; 48:2489-500.
2.Norman JM, Cohen GM, Bampton ET. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 2010; 6:1042-56.
3.Moscarello MA, Wood DD, Ackerley C, Boulias C. Myelin in multiple sclerosis is developmentally immature. The Journal of clinical investigation 1994; 94:146-54.
4.Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, Barrera P, Zendman AJ, van Venrooij WJ. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Annals of the rheumatic diseases 2004; 63:373-81.
5.Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T. Histone deimination antagonizes arginine methylation. Cell 2004; 118:545-53.
6.Wang Y, Korman SH, Ye J, Gargus JJ, Gutman A, Taroni F, Garavaglia B, Longo N. Phenotype and genotype variation in primary carnitine deficiency. Genetics in medicine : official journal of the American College of Medical Genetics 2001; 3:387-92.
7.Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. Journal of immunology (Baltimore, Md : 1950) 2001; 166:4177-84.
8.Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cellular and molecular life sciences : CMLS 2005; 62:2560-75.
9.Okazaki Y, Suzuki A, Sawada T, Ohtake-Yamanaka M, Inoue T, Hasebe T, Yamada R, Yamamoto K. Identification of citrullinated eukaryotic translation initiation factor 4G1 as novel autoantigen in rheumatoid arthritis. Biochemical and biophysical research communications 2006; 341:94-100.
10.Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. The Journal of biological chemistry 1996; 271:30709-16.
11.De Rycke L, Verhelst X, Kruithof E, Van den Bosch F, Hoffman I, Veys E, De Keyser F. Rheumatoid factor, but not anti-cyclic citrullinated peptide antibodies, is modulated by infliximab treatment in rheumatoid arthritis. Annals of the rheumatic diseases 2005; 64:299-302.
12.Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, Vincent C, Nachat R, Yamada M, Takahara H, Simon M, Guerrin M, Serre G. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis and rheumatism 2007; 56:3541-53.
13.Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science (New York, NY) 2000; 290:1717-21.
14.Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental cell 2004; 6:463-77.
15.Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120:159-62.
16.Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. The Journal of cell biology 2001; 152:657-68.
17.Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal 2000; 19:5720-8.
18.Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Molecular cell 2002; 10:457-68.
19.Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:15077-82.
20.Elgendy M, Sheridan C, Brumatti G, Martin SJ. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Molecular cell 2011; 42:23-35.
21.Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science (New York, NY) 2004; 304:1500-2.
22.Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005; 1:46-52.
23.Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein science : a publication of the Protein Society 2000; 9:2528-34.
24.Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. The Journal of cell biology 2008; 181:1065-72.
25.Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132:27-42.
26.Virgin HW, Levine B. Autophagy genes in immunity. Nature immunology 2009; 10:461-70.
27.Klionsky DJ. Neurodegeneration: good riddance to bad rubbish. Nature 2006; 441:819-20.
28.Madeo F, Eisenberg T, Kroemer G. Autophagy for the avoidance of neurodegeneration. Genes & development 2009; 23:2253-9.
29.Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nature reviews Drug discovery 2007; 6:304-12.
30.Fukuda M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. The Journal of biological chemistry 1991; 266:21327-30.
31.Dice JF. Chaperone-mediated autophagy. Autophagy 2007; 3:295-9.
32.Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology 2007; 8:519-29.
33.Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell metabolism 2012; 15:623-34.
34.Brunsing R, Omori SA, Weber F, Bicknell A, Friend L, Rickert R, Niwa M. B- and T-cell development both involve activity of the unfolded protein response pathway. The Journal of biological chemistry 2008; 283:17954-61.
35.Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM. T cells use two directionally distinct pathways for cytokine secretion. Nature immunology 2006; 7:247-55.
36.Gething MJ. Role and regulation of the ER chaperone BiP. Seminars in cell & developmental biology 1999; 10:465-72.
37.Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell death and differentiation 2004; 11:403-15.
38.Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports 2006; 7:880-5.
39.Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. The Journal of biological chemistry 2006; 281:30299-304.
40.Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer research 1993; 53:4701-14.
41.Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000; 407:777-83.
42.Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284:555-6.
43.Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiological genomics 2004; 17:21-30.
44.Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. The Journal of biological chemistry 2001; 276:33869-74.
45.Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. The Journal of cell biology 2004; 165:347-56.
46.Harrington C, Swan JH. Nursing home staffing, turnover, and case mix. Medical care research and review : MCRR 2003; 60:366-92; discussion 93-9.
47.Teraki Y, Miyake A, Takebayashi R, Shiohara T. Homing receptor and chemokine receptor on intraepidermal T cells in psoriasis vulgaris. Clinical and experimental dermatology 2004; 29:658-63.
48.Varona R, Cadenas V, Gomez L, Martinez AC, Marquez G. CCR6 regulates CD4+ T-cell-mediated acute graft-versus-host disease responses. Blood 2005; 106:18-26.
49.Varona R, Cadenas V, Lozano M, Moreno-Ortiz MC, Kremer L, Martinez AC, Marquez G. CCR6 regulates the function of alloreactive and regulatory CD4+ T cells during acute graft-versus-host disease. Leukemia & lymphoma 2006; 47:1469-76.
50.Varona R, Villares R, Carramolino L, Goya I, Zaballos A, Gutierrez J, Torres M, Martinez AC, Marquez G. CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. The Journal of clinical investigation 2001; 107:R37-45.
51.Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. Journal of immunology (Baltimore, Md : 1950) 1998; 161:409-14.
52.Naji N, Smith SG, Gauvreau GM, O'Byrne PM. T helper 17 cells and related cytokines after allergen inhalation challenge in allergic asthmatics. International archives of allergy and immunology 2014; 165:27-34.
53.Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448:484-7.
54.Singh H, Arentson BW, Becker DF, Tanner JJ. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proceedings of the National Academy of Sciences of the United States of America 2014; 111:3389-94.
55.Szabo SJ, Gold JS, Murphy TL, Murphy KM. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells: roles for NF-Y and NF-ATc. Molecular and cellular biology 1993; 13:4793-805.
56.Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972; 26:239-57.
57.Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS biology 2006; 4:e423.
58.Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular cell 2003; 11:619-33.
59.Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Developmental cell 2007; 13:365-76.
60.Almeida AM, Murakami Y, Baker A, Maeda Y, Roberts IA, Kinoshita T, Layton DM, Karadimitris A. Targeted therapy for inherited GPI deficiency. The New England journal of medicine 2007; 356:1641-7.
61.Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science (New York, NY) 2006; 313:1137-40.
62.Higa A, Chevet E. Redox signaling loops in the unfolded protein response. Cellular signalling 2012; 24:1548-55.
63.Rubenstein M, Hollowell CM, Guinan P. Effects of BCL-2 suppression by antisense oligonucleotides on additional regulators of apoptosis compensatory change in non-targeted protein expression. In vivo (Athens, Greece) 2011; 25:725-32.
64.Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell 2006; 10:51-64.
65.Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120:237-48.
66.Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer research 2008; 68:1485-94.
67.Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain : a journal of neurology 2008; 131:1969-78.
68.Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes & development 1999; 13:1211-33.
69.Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Baruch-Oren T, Berliner JA, Kirchgessner TG, Lusis AJ. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 2006; 26:2490-6.
70.Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007; 27:505-17.
71.Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, Kornfeld H, Fitzgerald KA, Lavelle EC. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of biological chemistry 2011; 286:9587-97.
72.Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-39.
73.Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell death & disease 2010; 1:e18.
74.Wang X, Eno CO, Altman BJ, Zhu Y, Zhao G, Olberding KE, Rathmell JC, Li C. ER stress modulates cellular metabolism. The Biochemical journal 2011; 435:285-96.
75.Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. The Journal of biological chemistry 1982; 257:7847-51.
76.Liu C, Hermann TE. Characterization of ionomycin as a calcium ionophore. The Journal of biological chemistry 1978; 253:5892-4.
77.Altman A, Coggeshall KM, Mustelin T. Molecular events mediating T cell activation. Advances in immunology 1990; 48:227-360.
78.Truneh A, Albert F, Golstein P, Schmitt-Verhulst AM. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 1985; 313:318-20.
79.Maiuri MC, Le Toumelin G, Criollo A, Rain J-C, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. The EMBO journal 2007; 26:2527-39.
80.Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature reviews Molecular cell biology 2007; 8:741-52.
81.Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007; 3:561-8.
82.Germain M, Nguyen AP, Le Grand JN, Arbour N, Vanderluit JL, Park DS, Opferman JT, Slack RS. MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. The EMBO journal 2011; 30:395-407.
83.Malik SA, Shen S, Marino G, BenYounes A, Maiuri MC, Kroemer G. BH3 mimetics reveal the network properties of autophagy-regulatory signaling cascades. Autophagy 2011; 7:914-6.
84.Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. The Journal of biological chemistry 2007; 282:13123-32.
85.Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 2008; 27:S137-S48.
86.Peck A, Mellins ED. Breaking old paradigms: Th17 cells in autoimmune arthritis. Clinical immunology (Orlando, Fla) 2009; 132:295-304.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top