跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董謹儀
研究生(外文):Jin-Yi Dong
論文名稱:Tzs蛋白質不同功能域缺失對農桿菌致病基因表現、細菌生長與致病性之影響
論文名稱(外文):Deletions of various domains of the Tzs protein affect Agrobacterium tumefaciens virulence gene expressions, bacterial growth, and virulence
指導教授:黃皓瑄
指導教授(外文):Hau-Hsuan Hwang
口試委員:葛孟杰黃三光
口試委員(外文):Mang-Jye GerSan-Gwang Hwan
口試日期:2015-05-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:156
中文關鍵詞:農桿菌反玉米素細胞分裂素
外文關鍵詞:AgrobacteriumTzsteans zeatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農桿菌為一種存在於土壤的植物病原菌,感染植物時會將菌體內腫瘤誘導質體(Ti plasmid)上特定的T-DNA片段(transferred-DNA)跨界送入宿主植物細胞內,同時T-DNA嵌入植物染色體後,誘發植物細胞不正常的大量合成植物生長素與細胞分裂素,導致植物產生冠癭腫瘤。農桿菌可依使用碳氮營養來源種類不同分為數個品系,其中在nopaline品系的農桿菌,其Ti質體上具備Tzs (trans-zeatin synthesizing)基因,可編碼產生反玉米素生合成酶。過去研究已知該基因與植物細胞分裂素之催化酶-ipt (isopentenyl transferase)基因序列有高度相似性;另Tzs基因於農桿菌體內會持續低量表現,可被植物傷口分泌的酚類化合物(acetosyringone,AS)誘導大量表現,並受農桿菌中的VirA/VirG 雙分子調控系統所調控,農桿菌中其他相關致病(Vir)基因也受此系統所調控,並參與農桿菌感染植物之過程。Tzs已知可與第四型分泌系統(T4SS)組成蛋白VirB5結合,並運送至細胞膜上。已知酸性(pH 5.5)低溫(19℃)培養條件下,外添加AS處理可提高tzs突變株Vir啟動子活性,卻因大量累積致病(Vir)蛋白質而造成生長速率遲緩,導致短暫表現T-DNA能力與腫瘤形成效率亦低於野生株,推Tzs基因可能參與農桿菌感染過程的早期。本研究嘗試分析上述突變株性狀是否因Tzs基因功能片段缺失、缺乏Tzs蛋白質功能或缺乏細胞分裂素所致,因此藉由Tzs蛋白質結構分析建構了tzs提早終止突變株、三株胺基酸替換突變株、N端及C端缺失突變株並檢測相關性狀;結果顯示所有突變株內皆無反玉米素生成。tzs提早終止突變株、胺基酸替換突變株與野生株相比VirA、VirB啟動子活性、短暫表現T-DNA效率、腫瘤形成效率皆下降。而Tzs基因功能缺失株中,短暫表現T-DNA之效率、腫瘤形成效率及生長速率會隨tzs缺失片段提升而影響加劇。另為了釐清Vir基因與Tzs相互影響之關係,因此藉由各式vir突變株,檢測其Tzs啟動子活性,發現virA與virG突變株中Tzs啟動子活性極低。而virB、virB3與virC突變株中Tzs啟動子活性會增強,但在virE突變株中則會降低,可知確實VirA/VirG為Tzs基因調控上游,且當virB、virC、virE基因功能喪失時,會影響Tzs啟動子活性。除此之外在酸性環境外添加AS處理下,nopaline品系農桿菌有較高的細胞分裂素合成,而農桿菌的酸性調控主要是藉由ChvG/ChvI雙分子系統調控,並在chvG、chvI、chvG/exoR突變株中發現Tzs蛋白質累積量皆比野生株低,由此得知Tzs蛋白質累積量也會受此雙分子系統調控。綜合上述可知VirA/VirG 雙分子調控系統為調控Tzs基因之上游,另ChvG/ChvI雙分子系統也會參與其中,且Tzs基因功能不同區域缺失會使Tzs蛋白質功能受影響,使菌體生長較差且會影響Vir基因表現,導致其致病力受影響,進而影響農桿菌感染過程。

The Agrobacterium tumefaciens is a plant pathogen and causes crown gall disease due to the transfer and integration of the T-DNA (transfer-DNA) from the Ti plasmid (tumor-inducing plasmid) and expression of auxin and cytokinin biosynthesis genes in infected plant cells. The nopaline-type A. tumefaciens has a Tzs (trans-zeatin synthesizing) gene in the Ti plasmid. The Tzs gene shares high sequence similarity with the IPT gene in the T-DNA region of the Ti plasmid. The Tzs gene expression is regulated by the VirA/VirG two-component system and is induced by the phenolic compounds, such as acetosyringone (AS). The Tzs gene encodes a cytokinin biosynthetic prenyl transferase. Recent studies demonstrated that the tzs deletion mutant decreased its virulence and transient transformation efficiency on Arabidopsis roots, suggesting that Tzs might be involved in step(s) prior to T-DNA integrations. Interestingly, the tzs deletion mutant contains higher Vir (virulence) gene expressions and Vir protein accumulations during AS inductions. In order to elucidate further the potential role(s) of Tzs and cytokinin (trans-zeatin) in A. tumefaciens, we generated several A. tumefaciens mutants expressing the Tzs protein with the nonsense muttations, N-terminal, C-terminal deletions, or amino acid substitution mutations. The amounts of secreted trans-zeatin inall the tzs mutants generated in this study were not detected by the HPLC (High Performance Liquid Chromatography) analysis. The VirA and VirB promoter activities, transient formation and tumorigenesis efficiencies were decreased in the tzs mutants with amino acid substitutions, C-termianl, or N-terminal deletion. The decreased percentages of bacterial growth rates, transient transformation and turmorgenesis efficiencies in the various tzs mutants were in positively correlation with the deletion length of the Tzs gene. Additionally, the Tzs promoter activities were significantly decreased in the virA and virG mutants. The Tzs promoter activities were increased in the virB, virB3, and virC mutants; whereas the promoter activity was decreased in the virE mutant, suggesting the loss of functions of the VirB, VirC, and VirE affect the Tzs promoter activity. The Tzs protein accumulation levels were lower in the chvG, chvI, and chvG/exoR mutans, suggesting the Tzs protein expression is regulated by the ChvG/ChvI two-component system. In summary, the data shown in this study demonstrated that deletions of various domains of the Tzs protein affect the Tzs protein functions, may therefore affect bacterial growth, Vir gene expressions, and virulence of Agrobacterium tumefaciens.

摘要 i
表目錄 x
圖目錄 xi
附錄 xii
壹、前言 1
一、農桿菌(Agrobacterium tumefaciens)基本介紹 1
1、農桿菌之基因體組成 1
2、農桿菌之感染過程 3
2.1、農桿菌附著於植物時的調控機制 3
2.2、農桿菌受植物受傷訊號誘導致病基因活化與調控 4
2.3、農桿菌藉由第四型分泌系統運送Vir蛋白質與轉移T-DNA進入植物細胞中 5
2.3.1、農桿菌產生單股T-DNA及協助其轉移至植物細胞 5
2.3.2、第四型分泌系統與T線毛之組成蛋白質及其功能 6
2.3.2.1、VirB1蛋白質協助組成第四型蛋白質分泌系統 6
2.3.2.2、農桿菌T pilus由VirB2、VirB5及VirB7共同組成 7
2.3.2.3、T4SS中心結構組成相關蛋白質 8
2.3.3、T4SS轉送T-DNA、VirE2、VirE3與VirF蛋白質 11
2.4、Vir蛋白質與植物蛋白質幫助T-DNA插入植物染色體及表現的過程 12
3、影響農桿菌感染效率的環境因素 16
4、ExoR-ChvG/ChvI訊息傳導路徑之酸性調控 16
二、細胞分裂素 17
1、植物細胞中生合成細胞分裂素途徑 18
2、植物細胞中細胞分裂素訊息傳遞的過程 20
3、細胞分裂素調控植物病原菌進而影響植物生理現象 20
三、Tzs基因研究 22
1、位於Ti質體上的Tzs之調控機制 22
2、Tzs蛋白質可影響農桿菌生長、感染力與致病基因的表現 23
3、Tzs蛋白質結構分析 24
四、研究目的 24
一、培養基 26
1、微生物培養使用之培養基 26
1.1、大腸桿菌(Escherichia coli)培養使用之培養基 26
1.1.1、2YT固態與液態培養基 26
1.1.2、LB液態培養基 26
1.2、農桿菌(Agrobacterium tumefaciens)培養使用之培養基 26
1.2.1、523固態與液態培養基 26
1.2.2、AB-MES 液態培養基 26
1.2.3、LB固態與液態培養基,用於置備農桿菌突變株 27
2、植物相關實驗使用之培養基 27
2.1、B5固態培養基 27
2.2、MS固態培養基 27
2.3、CIM固態培養基(Callus Inducing Medium) 27
2.4、water agar固態培養基 27
二、菌種 28
1、用於製備大腸桿菌勝任細胞(competent cell)之菌株 28
2、用於構築各式tzs (trans-zeatin synthesis)突變株之大腸桿菌菌株 28
3、農桿菌之各式tzs突變株 34
4、用於檢測Vir基因啟動子活性之農桿菌tzs突變株 36
4.1、用於構築VirA、VirB與Tzs啟動子區域之大腸桿菌菌株 36
4.2、用於檢測VirA、VirB與Tzs啟動子區域活性之農桿菌tzs突變株 36
5、檢測農桿菌短暫表現transfer-DNA (T-DNA)能力之農桿菌菌株 42
6、農桿菌致病過程中與酸性調控相關基因突變之農桿菌 44
7、用於偵測tzs啟動子區域,並以此表現GFP蛋白質之農桿菌菌株 44
三、大腸桿菌勝任細胞的製備與熱休克轉型法 46
1、大腸桿菌勝任細胞之製備 46
2、大腸桿菌熱休克轉型(heat-shock transformation) 46
四、農桿菌勝任細胞的製備與電穿孔轉型法 46
1、農桿菌勝任細胞之製備 46
2、農桿菌電穿孔轉型(electroporation) 46
五、構築農桿菌tzs突變株 47
1、細菌質體的DNA萃取(參考Genemark plasmid mini prep purification kit [台灣]之使用手冊,) 47
2、Tzs基因突變質體的構築(附圖一至五) 47
2.1、Tzs蛋白質提早終止estop-H (M-L-L) 48
2.2、Tzs蛋白質P9RT10S胺基酸替換突變株 48
2.3、Tzs蛋白質Q137TR138S胺基酸替換突變株 48
2.4、Tzs蛋白質N端缺失突變株(∆BCD/∆B-D) 48
2.5、Tzs蛋白質N端缺失突變株(∆BCDE/∆B-E) 48
2.6、Tzs蛋白質N端缺失突變株(∆BCDEF/∆B-F) 48
2.7、Tzs蛋白質C端缺失突變株(∆B-α8) 49
2.8、Tzs蛋白質C端缺失突變株(∆D-α8) 49
2.9、Tzs蛋白質C端缺失突變株(∆E-α8) 49
2.10、Tzs蛋白質C端缺失突變株(∆G-α8) 49
2.11、Tzs蛋白質C端缺失突變株(∆α8) 49
3、限制酵素之截切作用 50
4、連接酶之接合反應 51
5、水平膠體電泳分析 51
6、水平膠體內DNA片段之萃取與PCR產物純化(參考GeneMark廠商手冊) 51
7、篩選成功利用黏接酶黏合之質體 52
8、利用雙交換方式(double crossing over)進行同源基因置換(附圖六) 52
9、菌種保存 53
六、細菌的接合作用(Conjugation) 53
七、高效液相層析技術(High Performance Liquid Chromatography, HPLC)分析農桿菌突變株之trans-zeatin分泌量 53
1、農桿菌置備 53
2、HPLC分析 54
八、農桿菌在AB-MES液態培養基中,生長曲線的分析 54
九、農桿菌生長於AB-MES液態培養基時,Vir/Tzs蛋白質累積量之分析 55
1、以AS處理誘導培養農桿菌 55
2、農桿菌蛋白質之萃取 55
3、蛋白質濃度的測定 55
4、蛋白質的電泳分析(SDS-polyacrylamide gel [SDS-PAGE] analysis) 56
4.1、Tricine-SDS-PAGE (Tricine-SDS-ployacrylamide gel)膠體的製備 56
4.2、蛋白質之電泳分析 56
5、西方墨點法(Western blot assay) 56
5.1、膠體轉漬 56
5.2、以抗體偵測特定蛋白質之累積 56
5.3、移除轉漬膜上抗體的方法 57
十、農桿菌在AB-MES液態培養基中,Tzspro:GFP /Virpro:GFP啟動子活性分析 57
十一、阿拉伯芥植株的培養 57
十二、農桿菌短暫表現T-DNA (transient transformation assays)之效率分析 58
十三、農桿菌感染馬鈴薯之腫瘤性狀分析 58
一、建構及檢測農桿菌tzs提早終止突變株、胺基酸替換突變株、N端及C端缺失突變株之各式性狀 59
1、建構農桿菌tzs提早終止突變株、胺基酸替換突變株、N端及C端缺失突變株及突變株中Tzs蛋白質預測之3D結果 59
2、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基(minimal medium)中,Tzs蛋白質累積量及反式玉米素分泌量分析結果 60
3、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,VirA、 VirB及Tzs啟動子活性分析結果 61
3.1、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,VirA啟動子活性分析結果 62
3.1.1、農桿菌tzs提早終止突變株(E-stop與e-stop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)中VirA啟動子活性分析結果 62
3.1.2、農桿菌tzs C端缺失突變株(∆B-α8、∆D-α8、∆E-α8、∆G-α8與∆α8)中VirA啟動子活性分析結果 62
3.1.3、農桿菌tzs N端缺失突變株(∆B、∆B-D、∆B-E、∆B-F)中VirA啟動子活性分析結果 63
3.2、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,VirB啟動子活性分析結果 63
3.2.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)中VirB啟動子活性分析結果 63
3.2.2、農桿菌tzs C端缺失突變株(∆B-α8、∆D-α8、∆E-α8、∆G-α8與∆α8)中VirB啟動子活性分析結果 64
3.2.3、農桿菌tzs N端缺失突變株(∆B、∆B-D、∆B-E、∆B-F)中VirB啟動子活性分析結果 64
3.3、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,Tzs啟動子活性分析結果 64
3.3.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)中Tzs啟動子活性分析結果 65
3.3.2、農桿菌tzs C端缺失突變株(△B-α8、△D-α8、△E-α8、△G-α8與△α8)中Tzs啟動子活性分析結果 65
3.3.3、農桿菌tzs N端缺失突變株(△B、△B-D、△B-E、△B-F)中Tzs啟動子活性分析結果 65
4、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,Vir蛋白質累積量分析結果 65
4.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)中VirB蛋白質累積量分析結果 66
4.2、農桿菌tzs C端缺失突變株(△B-α8、△D-α8、△E-α8、△G-α8與△α8)中VirB蛋白質累積量分析結果 66
4.3、農桿菌tzs N端缺失突變株(△B、△B-D、△B-E、△B-F)中VirB蛋白質累積量分析結果 66
5、農桿菌tzs各式突變株在含乙醯丁香酮的酸性AB-MES培養基中,生長狀態之分析結果 67
5.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)在含乙醯丁香酮的酸性AB-MES培養基中,生長狀態之分析結果 67
5.2、農桿菌tzs C端缺失突變株(△B-α8、△D-α8、△E-α8、△G-α8與△α8)在含乙醯丁香酮的酸性AB-MES培養基中,生長狀態之分析結果 67
5.3、農桿菌tzs N端缺失突變株(△B、△B-D、△B-E、△B-F)在含乙醯丁香酮的酸性AB-MES培養基中,生長狀態之分析結果 67
6、農桿菌tzs各式突變株感染阿拉伯芥根段後,短暫表現T-DNA之效率分析結果 68
6.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)感染阿拉伯芥根段後,短暫表現T-DNA之效率分析結果 68
6.2、農桿菌tzs C端缺失突變株(△B-α8、△D-α8、△E-α8、△G-α8與△α8)感染阿拉伯芥根段後,短暫表現T-DNA之效率分析結果 68
6.3、農桿菌tzs N端缺失突變株(△B、△B-D、△B-E、△B-F)感染阿拉伯芥根段後,短暫表現T-DNA之效率分析結果 68
7、農桿菌tzs各式突變株感染馬鈴薯後,產生腫瘤之效率分析結果 69
7.1、農桿菌tzs提早終止突變株(Estop與estop)與胺基酸替換突變株(P9RT10S、L32RD33S與Q137TR138S)感染馬鈴薯後,產生腫瘤之效率分析結果 69
7.2、農桿菌tzs C端缺失突變株(△B-α8、△D-α8、△E-α8、△G-α8與△α8)感染馬鈴薯後,產生腫瘤之效率分析結果 69
7.3、農桿菌tzs N端缺失突變株(△B、△B-D、△B-E、△B-F)感染馬鈴薯後,產生腫瘤之效率分析結果 69
二、分析在不同的農桿菌vir突變株及chvG/I、exoR 突變株中,Tzs啟動子活性及蛋白質累積量 70
1、農桿菌vir突變株在含乙醯丁香酮的酸性AB-MES培養基中,Tzs啟動子活性分析結果 70
2、農桿菌vir突變株及chvG/I、exoR突變株在含AS的酸性AB-MES培養基中,Tzs蛋白質累積量分析結果 70
一、各式農桿菌tzs功能缺失突變株之性狀分析綜合結果 73
1、農桿菌tzs提早終止突變株E-stop及e-stop-H (M-L-L)中各式性狀分析結果 73
2、農桿菌Tzs胺基酸置換突變株-P9RT10S、L32RD33S、Q137TR138S突變株中各式性狀分析結果 74
3、農桿菌tzs各式C端(∆B-α8、∆D-α8、∆E-α8、∆G-α8、∆α8)缺失突變株中各式性狀分析結果 75
4、農桿菌tzs各式N端(∆B、∆BCD或∆B-D、∆BCDE或∆B-E、∆BCDEF或∆B-F)缺失突變株中各式性狀分析結果 75
二、農桿菌Tzs基因表現量受Tzs基因及其他Vir基因和ChvG/ChvI雙分子(two component)系統調控 76

李宜霖。(2008)。反玉米素合成蛋白質對土壤農桿菌致病力及生長影響之功能分析。國立中興大學碩士論文。
陳怡君。(2008)。農桿菌VirB基因表現及調控之研究。國立台灣大學植物病理與微生物所 碩士論文。
楊豐誌。(2010)。反玉米素合成蛋白質對土壤農桿菌virulence 基因表現之功能分析。國立中興大學碩士論文。
鄭惇方。(2013)。功能分析Tzs基因及細胞分裂素對農桿菌生長、感染力及致病基因表現之影響。國立中興大學碩士論文。
Davis, L.G., Dibner, M.D. and Battery, J. F. (1986). Basic methods in molecular biology. Elsevier, New York, N.Y. pp.364.
DeLano, W.L. (2002). PyMOL reference guide. In The PyMOL molecular graphics system. DeLano Scientific LLC eds, San Carlos, California, Palo Alto, CA, United States of America, pp. 1-68.
Kiebera, J.J., and Schaller, G.E. (2014). Cytokinins. In The Arabidopsis Book. Somerville, C.R., and Meyerowitz, E.M., eds, American Society of Plant Biologists, Rockville, MD, United States of America, 12: e0168.
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D.,and Darnell, J. (2000). Section 10.5 Eukaryotic Transcription Activators and Repressors. Molecular Cell Biology, 4th edition. New York: Freeman, W.H. pp. 370-380.
Mok, D.W.S., and Mok, M.C. (1994). Cytokinins: Chemistry, Activity and Function. CRC Press Inc., Boca Raton, FL, United States of America, pp.1-3.
Tempe, J., and Goldmann, A. (1982). Occurrence and biosynthesis of opines. In Molecular biology of plant tumors. Academic Press Incorporated, New York, NY, United States of America, pp. 427-449.
Tzfira, T., and Citovsky, V. (2008). Agrobacterium: From Biology to Biotechnology. Springer Science+Business Media, LLC, New York, NY, United States of America, pp.5-12.
Aguilar J., Zupan J., Cameron T.A., and Zambryski P.C. (2010). Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci USA 107: 3758-3763.
Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994-5998.
Akiyoshi, D.E., Regier, D.A., and Gordon, M.P. (1987). Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169: 4242-4248.
Akiyoshi, D.E., Regier, D.A., Jen, G., and Gordon, M.P. (1985). Cloning and nucleotide sequence of Tzs gene from Agrobacterium tumefaciens strain T37. Nucleic Acids Res 13: 2773-2788.
Allardet-Servent, A., S. Michaux-Charachon, E. Jumas-Bilak, L. Karayan et M. Ramuz (1993). Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175: 7869-7874.
Altabe S., Iñón de Iannino N., de Mendoza D., and Ugalde R.A. (1990). Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp. J Bacterial 172: 2563 -2567
Alt-Morbe, A., Kuhlmann, H.,and Schroder, J. (1989). Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol Plant-Microbe Interact 2: 301-308.
Aly, K.A, Krall, L., Lottspeich, F., and Baron, C. (2008). The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens. J Bacteriol 190: 1595-1604.
Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153: 3766-3775.
Amasino, R. (2005). 1955: Kinetin Arrives. The 50th Anniversary of a new plant hormone. Plant Physiol 138: 1177-1184.
Ames, I.H., and Mistretta, P.W. (1975). Auxin: its role in genetic tumor induction. Plant Physiol. 56: 744-746.
Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Mysore, K.S. (2007). Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19: 1695-1708.
Anand, A., Uppalapati, S.R., Ryu,C.M., Allen, S.N., Kang, L. Tang, Y.,and Mysore, K.S. (2008). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146: 703-715.
Anderson, L.B., Hertzel, A.V., and Das, A. (1996). Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci USA 93: 8889-8894.
Angra-Sharma, R. and Sharma, D.K. (1999). Cytokinins in pathogenesis and disease resistance of Pyrenophora teres-barley and Dreschslera maydis-maize interactions during early stages of infection. Mycopathologia 148: 87-95.
Argueso, C.T., Ferreira, F.J., and Kieber, J.J. (2009). Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32: 1147–1160.
Argueso, C.T., Ferreira, F.J., Hutchison, C.E., To, J.P.C., Epple, P., Mathews, D.E., Schaller, G.E., Dangl, J.L., and Kieber, J.J. (2012). Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8: e1002448.
Arigoni, D., Sagner, S., Latzel, C., Eisenreich, W., Bacher, A., and Zenk, M.H. (1997). Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. roc Natl Acad Sci USA 94: 10600-10605.
Astot, C., Dolezal, K., Nordstrom, A., Wang, Q., Kunkel, T., Moritz, T., Chua, N.H., and Sandberg, G. (2000). An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97: 14778-14783.
Atmakuri, K., Cascales, E., and Christie, P.J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54: 1199-1211.
Atmakuri, K., Ding, Z., and Christie, P.J. (2003). VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49: 1699-1713.
Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci USA 103: 2582-2587.
Baker, C.J., Mock, N.M., Whitaker, B.D., Roberts, D.P., Rice, C.P., Deahl, K.L., and Aver''yanov, A.A. (2005). Involvement of acetosyringone in plant-pathogen recognition. Biochem Biophys Res Commun 328: 130-136.
Bakshi, M. and Oelmüller, R. (2014). WRKY transcription factors. Plant Signal Behav. 9: e27700.
Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728.
Banerjee, A., and Sharkey, T.D. (2013). Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31: 1043-1055.
Banta, L.M., Bohne, J., Lovejoy, S.D., and Dostal, K. (1998). Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption. J Bacteriol 180: 6597-6606.
Barah, P., Winge, P., Kusnierczyk, A., Tran, D.H., and Bones, A.M. (2013). Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One 8: e58987.
Baron, C. (2006). VirB8: a conserved type IV secretion system assembly factor and drug target. Biochem Cell Biol 84: 890-899.
Baron, C., Domke, N., Beinhofer, M., and Hapfelmeier, S. (2001). Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183: 6852-6861.
Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997a). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179: 1203-1210.
Baron, C., Thorstenson, Y.R., and Zambryski, P.C. (1997b). The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179: 1211-1218.
Barry, G., S. Rogers, R. Fraley, and L. Brand. (1984). Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81: 4776-4780.
Bayliss, R., Harris, R., Coutte, L., Monier, A., Fronzes, R., Christie, P.J., Driscoll, P.C.,and Waksman, G. (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci USA 104: 1673-1678. Beaupre, C.E., Bohne, J., Dale, E.M., and Binns, A.N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179: 78-89.
Berger, B.R., and Christie, P.J. (1994). Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176: 3646-3660.
Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20: 2661-2680.
Blackwell J.R., and Horgan R. (1993). Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP : AMP isopentenyltransferase. Phytochemistry 34: 1477–1481
Brugière, N., Humbert, S., Rizzo, N., Bohn, J., and Habben, J.E. (2008). A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Mol Biol 67: 215-229.
Buchmann I., Marner F.J., Schröder G., Waffenschmidt S., and Schröder J. (1985). Tumour genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853-859.
Bulgakov, V.P., Kiselev, K.V., Yakovlev, K.V., Zhuravlev, Y.N., Gontcharov, A.A., and Odintsova, N.A. (2006). Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1: 454-461.
Cangelosi, G.A., Ankenbauer, R.G., and Nester, E.W. (1990). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87: 6708- 6712.
Cangelosi, G.A., Martinetti, G., and Nester, E.W. (1990). Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J. Bacteriol 172: 2172-2174.
Cangelosi, G.A., Martinetti, G., Leigh, J. A., Lee, C.C., Theines, C., and Nester, E.W. (1989). Role of Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J. Bacteriol 171: 1609-1615.
Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161: 655-664.
Cascales, E., and Christie, P.J. (2004a). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 101: 17228-17233.
Cascales, E., and Christie, P.J. (2004b). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170-1173.
Cascales, E., Atmakuri, K., Liu, Z., Binns, A.N., and Christie, P.J. (2005). Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58: 565-579.
Chandran, V., Fronzes, R., Duquerroy, S., Cronin, N., Navaza, J., and Waksman, G. (2009). Structure of the outer membrane complex of a type IV secretion system. Nature 462: 1011-1015.
Chang, C.H., and Winans, S.C. (1992). Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174: 7033-7039.
Chang, C.H., and Winans, S.C. (1996). Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacteriol 178: 4717-4720.
Charles, T.C., and Nester, E.W. (1993). A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175: 6614-6625.
Chilton, M.D., Drummond, M.H., Merio, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271.
Cho, H., and Winans, S.C. (2005). VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102: 14843-14848.
Choi, J., Choi, D., Lee, S., Ryu, C.M., and Hwang, I. (2011). Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16: 388-394.
Choi, J., Huh, S.U., Kojima, M., Sakakibara, H., Paek, K.-H., and Hwang, I. (2010). The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Devel Cell 19: 284-295.
Christie, P.J. (1997). Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179: 3085-3094.
Christie, P.J. (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694: 219-234.
Christie, P.J., and Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22: 51-61.
Christie, P.J., and Gordon, J.E. (2014). The Agrobacterium Ti Plasmids. Microbiol Spectr 2: 1-29.
Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451-485.
Christie, P.J., Ward, J.E., Jr., Gordon, M.P., and Nester, E.W. (1989). A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci USA 86: 9677-9681.
Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727.
Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9: 19-20.
Citovsky, V., Wong, M.L., and Zambryski, P. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193-1197.
Citovsky, V., Zupan, J., Warnick, D., and Zambryski, P.C. (1992). Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802-1805.
Close, T.J., Tait, R.C., Rempel, H.C., Hirooka, T., Kim, L., and Kado, C.I. (1987). Molecular characterization of the virC genes of the Ti plasmid. J Bacteriol 169: 2336-2344.
Cohn, J., Sessa, G., and Martin, G.B. (2001). Innate immunity in plants. Curr Opin Immunol 13: 55-62.
Dang, T.A., and Christie, P.J. (1997). The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179: 453-462.
Dang, T.A., Zhou, X.R., Graf, B., and Christie, P.J. (1999). Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32: 1239-1253.
Das, A., and Xie, Y.H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182: 758-763.
De Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842.
De Vos, G., and Zambryski, P.C. (1989). Expression of Agrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli. Mol Plant Microbe Interact 2: 43-52.
DeCleene, M., and DeLey, J. (1976). The host range of crown gall. Bot Rev 42: 389–466.
Deng, W., Chen, L., Peng, W.T., Liang, X., Sekiguchi, S., Gordon, M.P., Comai, L., and Nester, E.W. (1999). VirE1 is a specific molecular chaperone for the exported single -stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31: 1795-1807.
Depuydt, S., Dolezal, K., Van Lijsebettens, M., Moritz, T., Holsters, M., and Vereecke, D. (2008). Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267-1281.
Derksen, H., Rampitsch, C., and Daayf, F. (2013). Signaling cross-talk in plant disease resistance. Plant Sci 207: 79-87
Dessaux, Y., Petit, A., and Tempe, J. (1993). Chemistry and biochemistry of opines, chemical mediators of parasitism. Phytochemistry 34: 31-38.
Dijkstra, A.J., and Keck, W. (1996). Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178: 5555-5562.
Ding, H., and Hynesa, M.F. (2009). Plasmid transfer systems in the rhizobia. Can J Microbiol 55: 917-927.
Ding, Z., Zhao, Z., Jakubowski, S.J., Krishnamohan, A., Margolin, W., and Christie, P.J. (2002). A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol 184: 5572-5582.
Dombek, P., and Ream, W. (1997). Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179: 1165-1173.
Doty, S.L., Chang, M., and Nester, E.W. (1993). The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J Bacteriol 175: 7880-7886.
Douglas, C.J., Staneloni R.J., Rubin R.A., and Nester E.W. (1985). Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161: 850-860.
Draper, O., Middleton, R., Doucleff, M., and Zambryski, P.C. (2006). Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 281: 37628-37635.
Durrenberger, F., Crameri, A., Hohn, B., and Koukolikova-Nicola, Z. (1989). Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86: 9154-9158.
Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274: 22548-22555.
Eulgem, T., and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10: 366-371.
Fernandez, D., Dang, T.A., Spudich, G.M., Zhou, X.R., Berger, B.R., and Christie, P.J. (1996a). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178: 3156-3167.
Fernandez, D., Spudich, G.M., Zhou, X.R., and Christie, P.J. (1996b). The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178: 3168-3176.
Flesch, G., and Rohmer, M. (1988). Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 175: 405-411.
Fraley, R., Rogers, S., and Horsch, R. (1986). Genetic transformation in higher plants. CRC Crit Rev Plant Sci 4: 1-45.
Fronzes, R., Christie, P.J., and Waksman, G. (2009a). The structural biology of type IV secretion systems. Nat Rev Microbiol 7: 703-714.
Fronzes, R., Schafer, E., Wang, L., Saibil, H.R., Orlova, E.V., and Waksman, G. (2009b). Structure of a type IV secretion system core complex. Science 323: 266-268.
Fullner, K.J. (1998). Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180: 430-434.
Gajdošová, S., Spíchal, L., Kamínek, M., Hoyerová, K., Novák, O., Dobrev, P.I., Galuszka, P., Klíma, P., Gaudinová, A., Zcaron;ižková, E., Hanuš, J., Dančák, M., Trávníček, B., Pešek, B., Krupička, M., Vaňková, R., Strnad, M., and Motyka, V. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62: 2827-2840.
Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151-158.
Gan, S., and Amasino, R.M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin Science 270: 1986-1988.
Gao R., Mukhopadhyay A., Fang F., and Lynn D.G. (2006). Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol. 188: 5204–5211.
Gao, R., and Lynn, D.G. (2005). Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187: 2182-2189.
Garcia-Rodriguez, F.M., Schrammeijer, B., and Hooykaas, P.J.J. (2006). The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 34: 6496-6504.
Gaspar, Y.M., Nam, J., Schultz, C. J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., and Bacic, A. (2004). Characterization of the Arabidopsis lysine-rich arabinogalactan- protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135: 2162-2171.
Gasper, Y., Johnson, K.L., McKenna, J.A., Bacic, A., and Schultz, C.J. (2001). The complex structure of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47: 161-176.
Gelvin, S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51: 223-256.
Gelvin, S.B. (2003a). Agrobacterium and plant transformation: The biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67: 16-37.
Gelvin, S.B. (2003b). Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21: 95-98.
Gelvin, S.B. (2009). Agrobacterium in the genomics age. Plant Physiol150: 1665-1676.
Gelvin, S.B. (2010). Plant proteins involved in Agrobacterium-mediated roots: a transformation. Annu Rev Phytopathol 48: 45-68.
Gelvin, S.B. (2012). Traversing the Cell: Agrobacterium T-DNA''s Journey to the Host Genome. Front Plant Sci. 3: 52.
Gerlach, R.G., and Hensel, M. (2007). Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297: 401-415.
Gietl, C., Koukolíková-Nicola, Z., and Hohn, B. (1987). Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006-9010.
Goethals, K., Vereecke, D., Jaziri, M., Van Montagu, M., and Holsters, M. (2001). Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 39: 27-52.
Goldman, A., Tempe J., and Morel. G. (1968). Quelques particularites de diverses souches d''Agrobacterium tumefaciens. C R Seances Soc 162: 630-631.
Goldman, A., Thomas, D.W., and Morel, G. (1969). Sur le structure de la nopaline, metabolite anormale de certaines tumeurs de crown gall. C R Acad Sci 268:852-854
Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas C, Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328.
Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106: 16529-16534.
Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17: 598-601.
Gray, J., Gelvin, S.B., Meilan, R., and Morris, R.O. (1996). Transfer RNA is the source of extracellular isopentenyladenine in a Ti-plasmidless strain of Agrobacterium tumefaciens. Plant Physiol 110: 431-438.
Haberer, G. and Kieber, J.J. (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128: 354-362.
Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95-108.
Hamill, J.D. (1993). Alteration in auxin and cytokinin metabolism of higher plant due to expression of specofoc genes from pathogentic bacteria: a review. Aust J Plant Physiol 20: 405-423.
Hamilton, C.M., Lee, H., Li, P.L., Cook, D.M., Piper, K.R., von Bodman, S.B., Lanka, E., Ream, W., and Farrand, S.K. (2000). TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182: 1541-1548.
Hamilton, R.H., and Fall, M.Z. (1971). The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27: 229-230.
Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol.182: 4505-4511.
Hare, S., Bayliss, R., Baron, C., and Waksman, G. (2006). A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J Mol Biol 360: 56-66.
Heindl ,J.E., Wang, Y., Heckel, B.C., Mohari, B., Feirer, N., and Fuqua, C. (2014). Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front Plant Sci 5: 176.
Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J., and Kumlehn, J. (2009). Agrobacterium- mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics 835608.
Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131: 2961-2969.
Herrera-Estrella, A., Chen, Z.M., Van Montagu, M., and Wang, K. (1988). VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA—protein complex at the 5'' terminus of T-strand molecules. EMBO J 7: 4055-4062.
Howard, E.A., Winsor, B.A., De Vos, G., and Zambryski, P. (1989). Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5'' ends of T-strands. Proc Natl Acad Sci USA 86: 4017-4021.
Howard, E.A., Zupan, J.R., Citovsky, V., and Zambryski, P.C. (1992). The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109-118.
Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148-3167.
Hwang, H.H., Gelvin, S.B. and Lai, E. (2015). Agrobacterium biology and its application to transgenic plant production. Front. Plant Sci 6: 265.
Hwang, H.H., Wang, M.H., Lee, Y.L., Tsai, Y.L., Li, Y.H., Yang, F.J., Liao, Y.C., Lin. S.K., and Lai, E.M. (2010). Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. Mol Plant Pathol 11: 677-690.
Hwang, H.H., Yang, F.J., Cheng, T.F., Chen, Y.C., Lee, Y.L., Tsai, Y.L., and Lai, E.M. (2013). The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. Phytopathology 103: 888-899.
Hwang, I., Chen, H.C., and Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129: 500-515.
Hwang, I., Sheen, J., and Muller, B. (2012). Cytokinin signaling networks. Annu Rev Plant Biol 63: 353-380.
Hwang, I., Sheen, J., and Müller, B. (2012). Cytokinin signaling networks. Annu Rev Plant Biol 63: 353-380.
Hynes, M.F., Simon, R., and Pühler, A. (1985). The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13: 99-105.
Igari, K., Endo, S., Hibara, K., Aida, M., Sakakibara, H., Kawasaki, T., and Tasaka, M. (2008). Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J 55: 14-27.
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Kakimoto, T. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063.
Jakubowski, S.J., Cascales, E., Krishnamoorthy, V., and Christie, P.J. (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187: 3486-3495.
Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G., and Christie, P.J. (2009). Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71: 779-794.
Jakubowski, S.J., Krishnamoorthy, V., and Christie, P.J. (2003). Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185: 2867-2878.
Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341: 961-977.
Jarchow, E., Grimsley, N.H., and Hohn, B. (1991). virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci USA 88: 10426-10430.
Jayaswal, R.K., Veluthambi, K., Gelvin, S.B., and Slightom, J.L. (1987). Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169: 5035-5045.
Jeon, J., Kim, N.Y., Kim, S., Kang, N.Y., Novák, O., Ku, S.-J., Cho, C., Lee, D.J., Lee, E.-J., Strnad, M., and Kim, J. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285: 23371-23386.
Jia, Y.H., Li, L.P., Hou, Q.M., and Pan, S.Q. (2002). An Agrobacterium gene involved in tumorigenesis encodes an outer membrane protein exposed on the bacterial cell surface. Gene 284: 113-124.
Jin, S.G., Prusti, R.K., Roitsch, T., Ankenbauer, R.G., and Nester, E.W. (1990a). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. 172: 4945-4950.
Jin, S.G., Roitsch, T., Christie, P.J., and Nester, E.W. (1990b). The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531-537.
John, M.C., and Amasino, R.M. (1988). Expression of an Agrobacterium Ti plasmid gene involved in cytokinin biosynthesis is regulated by virulence loci and induced by plant phenolic compounds. J Bacteriol 170: 790-795.
Jones, A.L., Lai, E.M., Shirasu, K., and Kado, C.I. (1996). VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. J Bacteriol 178: 5706-5711.
Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176: 5255-5261.
Joubert, P., Beaupere, D., Wadouachi, A., Chateau, S., Sangwan, R.S., and Sangwan-Norreel, B.S. (2004). Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. J Nat Prod 67: 348-351.
Judd, P.K., Kumar, R.B., and Das, A. (2005a). Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102: 11498-11503.
Judd, P.K., Kumar, R.B., and Das, A. (2005b). The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55: 115-124.
Judd, P.K., Mahli, D., and Das, A. (2005c). Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology 151: 3483-3492.
Juhas, M., Crook, D.W., and Hood, D.W. (2008). Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10: 2377-2386.
Kado, C.I. (2014). Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol 5: 340.
Kado, C.I. and Heskett, M.G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60: 969-976.
Kaiss-Chapman, R.W., and Morris, R.O. (1976). Trans-zeatin in culture filtrates of Agrobacterium tumefaciens. Biochem Biophys Res Commun 76: 453-459.
Kalogeraki, V.S., and Winans, S.C. (1998). Wound-released chemical signals may elicit multiple responses from an Agrobacterium tumefaciens strain containing an octopine-type Ti plasmid. J Bacteriol 180: 5660-5667.
Kalogeraki, V.S., Zhu, J., Eberhard, A., Madsen, E.L., and Winans, S.C. (1999). The phenolic vir gene inducer ferulic acid is O-demethylated by the VirH2 protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 34: 512-522.
Kamada-Nobusada, T., and Sakakibara, H. (2009). Molecular basis for cytokinin biosynthesis. Phytochemistry 70: 444-449.
Kao, J.C., Perry, K.L.,and Kado, C.I. (1982). Indoleacetic acid complementation and its relation to host range specifying genes on the Ti plasmid of Agrobacterium tumefaciens. Mol Gen Genet. 188: 425-432.
Kerr, J.E., and Christie, P.J. (2010). Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192: 4923-4934.
Kerr, J.E., and Christie, P.J. (2010). Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192: 4923-4934.
Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci USA 81: 1728-1732.
Klemm, P., and Schembri, M.A. (2000). Bacterial adhesins: function and structure. Int J Med Microbiol 290: 27-35.
Koonin, E.V., and Rudd, K.E. (1994). A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci 19: 106-107.
Kostakioti, M., Newman, C.L., Thanassi, D.G., and Stathopoulos, C. (2005). Mechanisms of protein export across the bacterial outer membrane. J Bacteriol 187: 4306-4314.
Krall, L., Raschke, M., Zenk, M.H., and Baron, C. (2002). The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5’-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett 527: 315-318.
Kudo, T., Kiba, T., and Sakakibara, H. (2010). Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52: 53-60.
Kumar, M.N., and Verslues, P.E. (2014). Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol Plant 12290.
Kumar, R.B., and Das, A. (2001). Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 183: 3636-3641.
Kumar, R.B., and Das, A. (2002). Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43: 1523-1532.
Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98: 1871-1876.
Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., and Kyozuka, J. (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652-655.
Lacroix, B., and Citovsky, V. (2009). Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes. Commun Integr Biol 2: 42-45.
Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57: 467-481.
Lacroix, B., Loyter, A., and Citovsky, V. (2008). Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci USA 105: 15429-15434
Lacroix, B., Tzfira, T., Vainstein, A., and Citovsky, V. (2006). A case of promiscuity: Agrobacterium''s endless hunt for new partners. Trends Genet 22: 29-37.
Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. (2005). The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428-437.
Lagrange, T., Hakimi, M.A., Pontier, D., Courtois, F., Alcaraz, J.P., Grunwald, D., Lam,E., and Lerbs-Mache, S. (2003). Transcription factor IIB (TFIIB)-related protein (pBrp),a plant-specific member of the TFIIB-related protein family. Mol Cell Biol 23:3274-3286.
Lai, E.M., and Kado, C.I. (1998). Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180: 2711-2717.
Lai, E.M., and Kado, C.I. (2000). The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8: 361-369.
Lai, E.M., Chesnokova, O., Banta, L.M., and Kado, C.I. (2000). Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182: 3705-3716.
Lai, E.M., Eisenbrandt, R., Kalkum, M., Lanka, E., and Kado, C.I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184: 327-330.
Lai, E.M., Shih, H.W. Wen, S.R., Cheng, M.W., Hwang, H.H., and Chiu, S.H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6: 4130-4136.
Lee, C.W., Efetova, M., Engelmann, J.C., Kramell, R., Wasternack, C., Ludwig-Muller, J., Hedrich, R., and Deeken, R. (2009). Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21: 2948-2962.
Lee, C.W., Efetova, M., Engelmann, J.C., Kramell, R., Wasternack, C., Ludwig-Muller, J., Hedrich, R., and Deeken, R. (2009). Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21: 2948-2962.
Leroux B., Yanofsky M. F., Winans S. C., Ward J. E., Ziegler S. F., and Nester E. W. (1987). Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856.
Letham, D.S. (1973). Regulators of cell division in plant tissues. Cytokinins from Zea mays. Phytochemistry 12: 2445-2455.
Li, L., Jia, Y., Hou, Q., Charles, T.C., Nester, E.W., and Pan, S.Q. (2002). A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99: 12369-12374.
Lichtenthaler, H.K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47-65.
Lichter, A., Barash, I., Valinsky, L., and Manulis, S. (1995a). The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J Bacteriol 177: 4457-4465.
Lichter, A., Manulis, S., Sagee, O., Gafni, Y., Gray, J., Meilan, R., Morris, R.O., and Barash, I. (1995b). Production of cytokinin by Erwinia herbicola pv.gypsophilae and isolation of a locus conferring cytokinin biosynthesis. Mol Plant Microbe Interact 8: 114-121.
Lin, Y.H., Gao, R., Binns, A.N., and Lynn, D.G. (2008). Capturing the VirA/VirG TCS of Agrobacterium tumefaciens. Adv Exp Med Biol 631: 161-177.
Lin, Y.H., Pierce, B.D., Fang, F., Wise, A., Binns, A.N., and Lynn, D.G. (2014). Role of the VirA histidine autokinase of Agrobacterium tumefaciens in the initial steps of pathogenesis. Front Plant Sci 5: 195.
Llosa, M., Zupan, J., Baron, C., and Zambryski, P.C. (2000). The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182: 3437-3445.
Lu, J., den Dulk-Ras, A., Hooykaas, P.J., and Glover, J.N. (2009). Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci USA 106: 9643-9648.
Lundquist, R.C., Close, T.J.,and Kado, C.I. (1984). Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193: 1-7.
Luria, S.E., and Burrows, J.W. (1955). Hybridization between Escherichia coli and Shigella. J .Bacteriol 74: 461-476.
Matthysse, A.G. (1983). Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154: 906-915.
Mansouri, H., Petit, A., Oger, P., and Dessaux, Y. (2002). Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68: 2562-2566.
Matthysse, A.G., Holmes, K.V., and Gurlitz, R.H. (1981). Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145: 583-595.
Matthysse, A.G., White, S., and Lightfoot, R. (1995). Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177: 1069-1075.
Melchers, L.S., Maroney, M.J., den Dulk-Ras, A., Thompson, D.V., van Vuuren, H.A., Schilperoort, R.A., and Hooykaas, P.J. (1990). Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Mol Biol 14: 249-259.
Melchers, L.S., Regensburg-Tuïnk, T.J., Bourret, R.B., Sedee, N.J., Schilperoort, R.A., and Hooykaas, P.J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919-1925.
Melchers, L.S., Thompson, D.V., Idler, K.B., Neuteboom, S.T., de Maagd, R.A., Schilperoort, R.A., and Hooykaas, P.J. (1988). Molecular characterization of the virulence gene virA of the Agrobacterium tumefaciens octopine Ti plasmid. Plant Mol Biol 11: 227-237.
Menaga, A., and Morel, G. (1964). Sur la présence d''octopine dans les tissue de crowngall. C. R. Hebd. Seances Acad Sci 259: 4795-4796.
Michielse, C.B., Ram, A.F., Hooykaas, P.J., and Hondel, C.A. (2004b). Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 41: 571-578.
Michielse, C.B., Ram, A.F., Hooykaas, P.J., and van den Hondel, C.A. (2004a). Agrobacterium- mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 186: 2038-2045.
Middleton, R., Sjolander, K., Krishnamurthy, N., Foley, J., and Zambryski, P.C. (2005). Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. Proc Natl Acad Sci USA 102: 1685-1690.
Miller, C.O., Skoog, F., von Saltza, M.H., and Strong, F. (1995). Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77: 1392-1393.
Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37: 128-138.
Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., and Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103: 16598-16603.
Mohanty, A., Sarma N.P., and Tyagi, A.K. (1999). Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci 147: 127-137
Montoya, A.L., Chilton, M.-D., Gordon, M.P., Sciaky, D., and Nester E.W. (1977). Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall cells: role of plasmid genes. J Bacteriol 129: 101-107.
Morton, E.R., Merritt, P.M., Bever, J.D., and Fuqua, C. (2013). Large deletions in the pAtC58 megaplasmid of Agrobacterium tumefaciens can confer reduced carriage cost and increased expression of virulence genes. Genome Biol Evol 5: 1353-1364.
Mossey, P., Hudacek, A., and Das, A. (2010). Agrobacterium tumefaciens Type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192: 2830-2838.
Mozo, T., and Hooykaas, P.J. (1992). Factors affecting the rate of T-DNA transfer from Agrobacterium tumefaciens to Nicotiana glauca plant cells. Plant Mol Biol 19: 1019-1030.
Murai, N., Skoog, F., Doyle, M.E., and Hanson, R.S. (1980). Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc Natl Acad Sci USA 77: 619-623.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant 15: 473-497.
Mushegian, A.R., Fullner, K.J., Koonin, E.V., and Nester, E.W. (1996). A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci USA 93: 7321-7326.
Mysore, K.S., Nam, J., and Gelvin, S.B. (2000). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953.
Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G., and Gelvin, S.B. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261: 429-438.
Naseem, M., and Dandekar, T. (2012). The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8: e1003026.
Nishiyama R., Watanabe Y., Fujita Y., Le D.T., Kojima M., Werner T., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Kakimoto T., Sakakibara H., Schmülling T., and Tran L.S. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23: 2169-2183.
O''Callaghan, D., Cazevieille, C., Allardet-Servent, A., Boschiroli, M.L., Bourg, G., Foulongne, V., Frutos, P., Kulakov, Y., and Ramuz, M. (1999). A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33: 1210-1220.
Okamoto, S., Toyoda-Yamamoto, A., Ito, K., Takebe, I., and Machida, Y. (1991). Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet 228: 24-32.
Palumbo, J.D., Phillips, D.A., and Kado, C.I. (1998). Characterization of a new Agrobacterium tumefaciens strain from alfalfa. Arch Microbiol 169: 381-386
Pandey, S.P., and Somssich, I.E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiol 150: 1648-1655.
Parsek, M.R., and Fuqua, C. (2004). Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186: 4427-4440.
Pertry, I., Václavíková, K., Depuydt, S., Galuszka, P., Spíchal, L., Temmerman, W., Stes, E., Schmülling, T., Kakimoto, T., Van Montagu, M.C.E., Strnad, M., Holsters, M., Tarkowski, P., and Vereecke, D. (2009). Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA 106: 929-934.
Pitzschke, A., and Hirt, H. (2010). New insights into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J 29: 1021-1032.
Pitzschke, A., Djamei, A., Teige, M., and Hirt, H. (2009). VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci USA 106: 18414-18419.
Porter, S.G., Yanofsky, M.F., and Nester, E.W. (1987). Molecular characterization of the virD operon from Agrobacterium tumefaciens. Nucleic Acids Res 15: 7503-7517.
Powell, G.K., and Morris, R.O. (1986). Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14: 2555-2565.
Powell, G.K., Hommes, N.G., Kuo, J. Castle, L.A., and Morris, R.O. (1988). Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. Mol Plant Microbe Interact 1: 235-242.
Puvanesarajah V., Schell F.M., Stacey G., Douglas C.J., and Nester E.W. (1985). Role for 2-Linked-13-D-Glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164: 102-106.
Rashkova, S., Spudich, G.M., and Christie, P.J. (1997). Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179: 583-591.
Rashkova, S., Zhou, X.R., Chen, J., and Christie, P.J. (2000). Self-Assembly of the Agrobacterium tumefaciens VirB11 Traffic ATPase. J Bacteriol 182: 4137-4145.
Regensburg-Tuïnk, A.J., and Hooykaas, P.J. (1993). Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71.
Regier, D.A., and Morris, R.O. (1982). Secretion of trans-zeatin by Agrobacterium tumefaciens: a function determined by the nopaline Ti plasmid. Biochem Biophys Res Commun 104: 1560-1566.
Reuhs, B.L., Kim, J.S., and Matthysse, A.G. (1997). Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 179: 5372-5379.
Reusche, M., Klásková, J., Thole, K., Truskina, J., Novák, O., Janz, D., Strnad, M., Spíchal, L., Lipka, V., and Teichmann, T. (2013). Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant Microbe Interact 26: 850-860.
Rhee, Y., Gurel, F., Gafui, Y. Dingwall, C., and Citovsky, V. (2000). A genetic system for detection of protein nuclear import and export. Nature Biotechnol 18: 433-437.
Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., and Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104: 19631-19636.
Robert-Seilaniantz, A., Grant, M., and Jones, J.D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49: 317-343.
Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J.,and Kado, C.I. (1987). Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol. 169: 5101-5012.
Rohdich, F. (2001). Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98: 14837-14842.
Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565-574.
Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 1295: 517-524.
Rossi, L., Hohn, B., and Tinland, B. (1993). The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239: 345-353.
Rossi, L., Hohn, B., and Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93: 126-130.
Sablowski, R. (2009). Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci USA 106: 16016-16017.
Sagulenko, E., Sagulenko, V., Chen, J., and Christie, P.J. (2001a). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183: 5813-5825.
Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E., and Christie, P.J. (2001b). VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183: 3642-3651.
Sakakibara, H. (2005). Cytokinin biosynthesis and regulation. Vitam Horm 72: 271-287.
Sakakibara, H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57: 431-449.
Sakakibara, H., Kasahara, H., Ueda, N., Kojima, M., Takei, K., Hishiyama, S., Asami, T., Okada, K., Kamiya, Y., Yamaya, T., and Yamaguchi, S. (2005). Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102: 9972-9977.
Sakamoto, T., Sakakibara, H., Kojima, M., Yamamoto, Y., Nagasaki H., Inukai, Y., Sato, Y., and Matsuoka, M. (2006). Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin Biosynthesis gene in Rice. Plant Physiol 142: 54-62.
Saraste, M., Sibbald, P.R., and Wittinghofer, A. (1990). The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15: 430-434.
Sardesai, N., Lee, L.Y., Chen, H., Yi, H., Olbricht, G.R., Stirnberg, A., Jeffries, J., Xiong, K., Doerge, R.W., and Gelvin, S.B. (2013). Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 6: ra100.
Scheeren-Groot, E.P., Rodenburg, K.W., den Dulk-Ras, A., Turk, S.C., and Hooykaas, P.J. (1994). Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. J Bacteriol 176: 6418-6426.
Scheiffele, P., Pansegrau, W., and Lanka, E. (1995). Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270: 1269-1276.
Schmidt-Eisenlohr, H., Domke, N., Angerer, C., Wanner, G., Zambryski, P.C., and Baron, C. (1999). Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181: 7485-7492.
Schrammeijer, B., den Dulk-Ras, A., Vergunst, A.C., Jurado Jácome, E., and Hooykaas, P.J. (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31: 860-868.
Schrammeijer, B., Hemelaar, J., and Hooykaas, P.J. (1998). The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Mol Plant Microbe Interact 11: 429-433.
Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuïnk, T.J., Crosby, W.L., and Hooykaas, P.J. (2001). Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11: 258-262.
Seemann, M., Campos, N., Rodriguez-Concepcion, M., Ibanez, E., Duvold, T., Tritsch, D., Boronat, A., and Rohmer, M. (2002). Isoprenoid biosynthesis via the methylerythritol phosphate pathway: accumulation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli. Tetrahedron Lett 43: 1413-1415.
Shaw C. H., Ashby A. M., Brown A., Royal C., and Loake G. J. (1988). VirA and VirG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Mol Microbiol 2: 413-417.
Shaw, C.H., Watson, M.D., Carter, G.H., and Shaw, C.H. (1984).The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumor formation. Nucleic Acids Res 12: 6031-6041.
Sheikholeslam, S.N., and Weeks, D.P. (1987). Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8: 291-298.
Shimoda, N., Toyoda-Yamamoto, A., Aoki, S., and Machida, Y. (1993). Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268: 26552-26558.
Shimoda, N., Toyoda-Yamamoto, A., Nagamine, J., Usami, S., Katayama, M., Sakagami, Y., and Machida, Y. (1990). Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87: 6684 -6688.
Shirasu, K., and Kado, C.I. (1993). Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111: 287-294.
Shurvinton, C.E., Hodges, L., and Ream, W. (1992). A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci USA. 89: 11837-11841.
Shurvioton, C.E., and Ream, W. (1991). Stimulation of Agrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bacteriol 173: 5558-5563.
Simone, M., McCullen, C.A., Stahl, L.E., and Binns, A.N. (2001). The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41: 1283-1293.
Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol XI: 118-131.
Smart, C.M., Scofield, S.R., Bevan, M.W., and Dyer, T.A. (1991). Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 3: 647-656.
Spichal, L., Rakova, N.Y., Riefler, M., Mizuno, T., Romanov, G.A., Strnad, M., and Schmulling, T. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45: 1299-1305.
Spudich, G.M., Fernandez, D., Zhou, X.R., and Christie, P.J. (1996). Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci USA 93: 7512-7517.
Stachel, S.E., and Zambryski, P.C. (1989). Bacteria-yeast conjugation. Generic trans-kingdom sex ? Nature 340: 190-191.
Stafford, H.A. (2000). Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information, and impact on molecular genetics. Bot Rev 66: 99-118.
Steck, T.R., Morel, P., and Kado, C.I. (1988). vir box sequences in Agrobacterium tumefaciens pTiC58 and A6. Nucleic Acids Res 16: 8736-8736.
Stephens, K.M., Roush, C., and Nester, E. (1995). Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 177: 27-36.
Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000). Two-component signal transduction. Annu Rev Biochem 69: 183 -215.
Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. (2002). Biofilms as complex differentiated communities. Annu Rev Microbiol 56: 187-209.
Subramoni, S., Nathoo, N., Klimov, E., and Yuan, Z.C. (2014). Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5: 322.
Sugawara, H., Ueda, N., Kojima, M., Makita, N., Yamaya, T., and Sakakibara, H. (2008). Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis. Proc Natl Acad Sci USA 105: 2734–2739.
Sundberg, C.D., and Ream, W. (1999). The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181: 6850-6855.
Surico, G., Iacobellis, N.S., and Sisto, A. (1985). Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol Plant Pathol 26: 309-320.
Takei, K., Yamaya, T., and Sakakibara, H. (2004). Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279: 41866-41872.
Tenea, G.N., Spantzel, J., Lee, L.Y., Zhu, Y., Lin, K., Johnson, S.J., and Gelvin, S.B. (2009). Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21: 3350-3367.
Thomashow, M.F., Karlinsey, J.E., Marks, J.R., and Hurlbert, R.E. (1987). Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209-3216.
Thorstenson, Y.R., Kuldau, G.A., and Zambryski, P.C. (1993). Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol 175: 5233-5241.
Tinland, B., Koukolíková-Nicola, Z., Hall, M.N., and Hohn, B. (1992). The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci USA. 89: 7442-7446.
Toro, N., Datta, A., Carmi, O.A., Young, C., Prusti, R.K., and Nester, E.W. (1989). The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845-6849.
Toro, N., Datta, A., Yanofsky, M., and Nester, E. (1988). Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci USA 85: 8558-8562.
Tsai, Y.L., Wang, M.H., Gao, C., Klüsener, S., Baron, C., Narberhaus, F., and Lai, E.M. (2009). Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiology 155: 3270-3280.
Tsai, Y.L., Chiang, Y.R., Wu, C.F., Narberhaus, F., and Lai, E.M. (2012). One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone. PLoS One7: e49685.
Tzagoloff, A. (1963). Metabolism of Sinapine in Mustard Plants. I. Degradation of Sinapine into Sinapic Acid & Choline. Plant Physiol 38: 202-206.
Tzfira, G., and Citovsky, V. (2002). Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129.
Tzfira, T., and Citovsky, V. (2001a). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607.
Tzfira, T., and Citovsky, V. (2001b). From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 1: 201-212.
Tzfira, T., and Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17: 147-154.
Tzfira, T., Rhee, Y., Chen, M.H., Kunik, T., and Citovsky, V. (2000). Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187-219.
Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607.
Tzfira, T., Vaidya, M., and Citovsky, V. (2004). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87-92.
Ueda, N., Kojima, M., Suzuki, K., and Sakakibara, H. (2012). Agrobacterium tumefaciens tumor morphology root plastid localization and preferential usage of hydroxylated prenyl donor is important for efficient gall formation. Plant Physiol 159: 1064-1072.
Ueguchi, C., Sato, S., Kato, T., and Tabata, S. (2001). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42: 751-755.
Valvekens, D., Montagu, M.V., and Van Lijsebettens, M. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540.
Veena, Jiang, H., Doerge, R.W., and Gelvin, S.B. (2003). Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219-236.
Vergunst, A.C., Jansen, L.E., Fransz, P.F., de Jong, J.H., and Hooykaas, P.J. (2000a). Cre/lox-mediated recombination in Arabidopsis: evidence for transmission of a translocation and a deletion event. Chromosoma 109: 287-297.
Vergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M., Regensburg-Tuink, T.J., and Hooykaas, P.J. (2000b). VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982.
Vergunst, A.C., van Lier, M.C., den Dulk-Ras, A., and Hooykaas, P.J. (2003). Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133: 978-988.
Vergunst, A.C., van Lier, M.C., den Dulk-Ras, A., Stüve, T.A., Ouwehand, A., and Hooykaas, P.J. (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102: 832–837.
Viss, P.R., Brooks, E.M., and Driver, J.A. (1991). A simplified method for the control of bacterial contamination in woody plant tissue culture. In Vitro Cell Dev Biol 27: 42.
Vranová, E., Coman, D., and Gruissem, W. (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64: 665-700.
Waksman, G., and Fronzes, R. (2010). Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35: 691-698.
Wang, K., Herrera-Estrella L., Van Montagu M., and Zambryski, P. (1984). Right 25 bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 35-41
Wang, K., Herrera-Estrella, A., and Van Montagu, M. (1990). Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation. J Bacteriol 172: 4432-4440.
Wang, K., Stachel, S.E., Timmerman, B., Van Montagu, M., and Zambryski, P.C. (1987). Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587-591.
Ward, D.V., Draper, O., Zupan, J.R., and Zambryski, P.C. (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci USA 99: 11493-11500.
Ward, D.V., Zupan, J.R., and Zambryski, P.C. (2002). Agrobacterium VirE2 gets the VIP1 treatment in plant nuclear import. Trends Plant Sci 7: 1-3.
Weigel, D., Ahn, J.H., Blázquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrándiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. (2000). Activation tagging in Arabidopsis. Plant Physiol 122: 1003-1013.
Winans S. C. (1990). Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172: 2433–2438.
Winans S.C., Ebert P.R., Stachel S.E., Gordon M.P., and Nester E.W. (1986). A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83: 8278–8282.
Winans, S.C., Kerstetter, R.A., and Nester, E.W. (1988). Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047-4054.
Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F. Jr., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp, P.D., Bovee, D. Sr., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.P., Olson M.V., and Nester, E.W. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323.
Wu, H.Y., Chung, P.C., Shih, H.W., Wen, S.R., and Lai, E.M. (2008). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190: 2841-2850.
Wu, C.F., Lin, J.S., Shaw, G.C.,amd Lai, E.M. (2012). Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8: e1002938.
Xu, X.Q., and Pan, S.Q. (2000). An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35: 407-414.
Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T., and Mizuno, T. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42: 1017-1023.
Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., and Ori, N. (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15: 1566-1571.
Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W. (1986). The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47: 471-477.
Yeo, H.J., Yuan, Q., Beck, M.R., Baron, C., and Waksman. G. (2003). Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci USA 100: 15947-15952.
Yi, H., Sardesai, N., Fujinuma, T., Chan, C.W., Veena, and Gelvin, S.B. (2006). Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18: 1575-1589.
Young, C., and Nester, E.W. (1988). Association of the VirD2 protein with the 5'' end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367-3374.
Yuan, Q., Carle, A., Gao, C., Sivanesan, D., Aly, K.A., Hoppner, C., Krall, L., Domke, N., and Baron, C. (2005). Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280: 26349-26359.
Yuan, Z.C., Liu, P., Saenkham, P., Kerr, K.,and Nester, E.W. (2008). Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium–plant interactions. J Bacteriol 190: 494-507.
Yusibov, V.M., Steck, T.R., Gupta, V., and Gelvin, S.B. (1994). Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91: 2994-2998.
Zahrl, D., Wagner, M., Bischof, K., Bayer, M., Zavecz, B., Beranek, A., Ruckenstuhl, C., Zarfel, G.E., and Koraimann, G. (2005). Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151: 3455-3467.
Zaltsman, A., Krichevsky, A., Loyter, A., and Citovsky, V. (2010). Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 7: 197-209.
Zambryski, P., Tempe, J., and Schell, J. (1989). Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193-201.
Zhan, X., Jones, D.A., and Kerr, A. (1990). The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobaeterium rhizogenes. Plant Mol Biol 14: 785-792.
Zhang, X.D., Letham, D.S., Zhang, R.,and Higgins, T.J. (1996). Expression of the isopentenyl transferase gene is regulated by auxin in transgenic tobacco tissues. Transgenic Res 5: 57-65.
Zheng, Y., He, X.W., Ying, Y.H., Lu, J.F., Gelvin, S.B., and Shou, H.X. (2009). Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Mol Plant 2: 832-837.
Zhu, J., Oger, P.M., Schrammeijer B., Hooykaas P.J., Farrand, S.K., and Winans, S.C. (2000). The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895.
Zhu, Y., Nam, J., Carpita, N.C., Matthysse, A.G., and Gelvin, S.B. (2003a). Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol 133: 1000-1010.
Zhu, Y., Nam, J., Humara, J.M., Mysore, K.S., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, A.D., Kopecky, A.L., Hwang, H.-H., Bhattacharjee, S., Rao, P.K., Tzfira, T., Rajagopal, J., Yi, H., Veena, Yadav, B.S., Crane, Y.M., Lin, K., Larcher, Y., Gelvin, M.J., Knue, M., Ramos, C., Zhao, X., Davis, S.J., Kim, S.I., Ranjith-Kumar, C.T., Choi, Y.J., Hallan, V.K., Chattopadhyay, S., Sui, X., Ziemienowicz, A., Matthysse, A.G., Citovsky, V., Hohn, B., and Gelvin, S.B. (2003b). Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505.
Zupan, J., Hackworth, C.A., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1* promotes T-pilus formation in the vir-type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189: 6551-6563.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top